Voir la notice de l'article provenant de la source Numdam
In this paper, we study one kind of stochastic recursive optimal control problem for the systems described by stochastic differential equations with delay (SDDE). In our framework, not only the dynamics of the systems but also the recursive utility depend on the past path segment of the state process in a general form. We give the dynamic programming principle for this kind of optimal control problems and show that the value function is the viscosity solution of the corresponding infinite dimensional Hamilton-Jacobi-Bellman partial differential equation.
@article{COCV_2012__18_4_1005_0, author = {Chen, Li and Wu, Zhen}, title = {Dynamic programming principle for stochastic recursive optimal control problem with delayed systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1005--1026}, publisher = {EDP-Sciences}, volume = {18}, number = {4}, year = {2012}, doi = {10.1051/cocv/2011187}, mrnumber = {3019470}, zbl = {1259.49040}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011187/} }
TY - JOUR AU - Chen, Li AU - Wu, Zhen TI - Dynamic programming principle for stochastic recursive optimal control problem with delayed systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 1005 EP - 1026 VL - 18 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011187/ DO - 10.1051/cocv/2011187 LA - en ID - COCV_2012__18_4_1005_0 ER -
%0 Journal Article %A Chen, Li %A Wu, Zhen %T Dynamic programming principle for stochastic recursive optimal control problem with delayed systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 1005-1026 %V 18 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011187/ %R 10.1051/cocv/2011187 %G en %F COCV_2012__18_4_1005_0
Chen, Li; Wu, Zhen. Dynamic programming principle for stochastic recursive optimal control problem with delayed systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 1005-1026. doi: 10.1051/cocv/2011187
Cité par Sources :