Stability of retarded systems with slowly varying coefficient
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 877-888

Voir la notice de l'article provenant de la source Numdam

The “freezing” method for ordinary differential equations is extended to multivariable retarded systems with distributed delays and slowly varying coefficients. Explicit stability conditions are derived. The main tool of the paper is a combined usage of the generalized Bohl-Perron principle and norm estimates for the fundamental solutions of the considered equations.

DOI : 10.1051/cocv/2011185
Classification : 34K20
Keywords: linear retarded systems, stability, generalized Bohl-Perron principle
@article{COCV_2012__18_3_877_0,
     author = {Gil, Michael Iosif},
     title = {Stability of retarded systems with slowly varying coefficient},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {877--888},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {3},
     year = {2012},
     doi = {10.1051/cocv/2011185},
     mrnumber = {3041668},
     zbl = {1268.34134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011185/}
}
TY  - JOUR
AU  - Gil, Michael Iosif
TI  - Stability of retarded systems with slowly varying coefficient
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 877
EP  - 888
VL  - 18
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011185/
DO  - 10.1051/cocv/2011185
LA  - en
ID  - COCV_2012__18_3_877_0
ER  - 
%0 Journal Article
%A Gil, Michael Iosif
%T Stability of retarded systems with slowly varying coefficient
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 877-888
%V 18
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011185/
%R 10.1051/cocv/2011185
%G en
%F COCV_2012__18_3_877_0
Gil, Michael Iosif. Stability of retarded systems with slowly varying coefficient. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 877-888. doi: 10.1051/cocv/2011185

Cité par Sources :