A Hölder infinity laplacian
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 799-835

Voir la notice de l'article provenant de la source Numdam

In this paper we study the limit as p → ∞ of minimizers of the fractional Ws,p-norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this construction, we obtain some regularity results.

DOI : 10.1051/cocv/2011182
Classification : 35D40, 35J60, 35J65
Keywords: Lipschitz extensions, Hölder extensions, infinity laplacian, non-local and non-linear equations, viscosity solutions
@article{COCV_2012__18_3_799_0,
     author = {Chambolle, Antonin and Lindgren, Erik and Monneau, R\'egis},
     title = {A {H\"older} infinity laplacian},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {799--835},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {3},
     year = {2012},
     doi = {10.1051/cocv/2011182},
     mrnumber = {3041665},
     zbl = {1255.35078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011182/}
}
TY  - JOUR
AU  - Chambolle, Antonin
AU  - Lindgren, Erik
AU  - Monneau, Régis
TI  - A Hölder infinity laplacian
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 799
EP  - 835
VL  - 18
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011182/
DO  - 10.1051/cocv/2011182
LA  - en
ID  - COCV_2012__18_3_799_0
ER  - 
%0 Journal Article
%A Chambolle, Antonin
%A Lindgren, Erik
%A Monneau, Régis
%T A Hölder infinity laplacian
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 799-835
%V 18
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011182/
%R 10.1051/cocv/2011182
%G en
%F COCV_2012__18_3_799_0
Chambolle, Antonin; Lindgren, Erik; Monneau, Régis. A Hölder infinity laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 799-835. doi: 10.1051/cocv/2011182

Cité par Sources :