Voir la notice de l'article provenant de la source Numdam
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956-973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
@article{COCV_2012__18_3_643_0, author = {Jouan, Philippe}, title = {Invariant measures and controllability of finite systems on compact manifolds}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {643--655}, publisher = {EDP-Sciences}, volume = {18}, number = {3}, year = {2012}, doi = {10.1051/cocv/2011165}, mrnumber = {3041659}, zbl = {1281.93020}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011165/} }
TY - JOUR AU - Jouan, Philippe TI - Invariant measures and controllability of finite systems on compact manifolds JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 643 EP - 655 VL - 18 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011165/ DO - 10.1051/cocv/2011165 LA - en ID - COCV_2012__18_3_643_0 ER -
%0 Journal Article %A Jouan, Philippe %T Invariant measures and controllability of finite systems on compact manifolds %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 643-655 %V 18 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011165/ %R 10.1051/cocv/2011165 %G en %F COCV_2012__18_3_643_0
Jouan, Philippe. Invariant measures and controllability of finite systems on compact manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 643-655. doi: 10.1051/cocv/2011165
Cité par Sources :