Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 483-500

Voir la notice de l'article provenant de la source Numdam

In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex objective functions on Hadamard manifolds. To reach this goal, we initially extend the concepts of regular and generalized subgradient from Euclidean spaces to Hadamard manifolds and prove that, in the convex case, these concepts coincide with the classical one. For the minimization problem, assuming that the function is bounded from below, in the quasiconvex and lower semicontinuous case, we prove the convergence of the iterations given by the method. Furthermore, under the assumptions that the sequence of proximal parameters is bounded and the function is continuous, we obtain the convergence to a generalized critical point. In particular, our work extends the applications of the proximal point methods for solving constrained minimization problems with nonconvex objective functions in Euclidean spaces when the objective function is convex or quasiconvex on the manifold.

DOI : 10.1051/cocv/2011102
Classification : 90C26
Keywords: proximal point method, quasiconvex function, Hadamard manifolds, full convergence
@article{COCV_2012__18_2_483_0,
     author = {Papa Quiroz, Erik A. and Oliveira, P. Roberto},
     title = {Full convergence of the proximal point method for quasiconvex functions on {Hadamard} manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {483--500},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {2},
     year = {2012},
     doi = {10.1051/cocv/2011102},
     mrnumber = {2954635},
     zbl = {1273.90162},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011102/}
}
TY  - JOUR
AU  - Papa Quiroz, Erik A.
AU  - Oliveira, P. Roberto
TI  - Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 483
EP  - 500
VL  - 18
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011102/
DO  - 10.1051/cocv/2011102
LA  - en
ID  - COCV_2012__18_2_483_0
ER  - 
%0 Journal Article
%A Papa Quiroz, Erik A.
%A Oliveira, P. Roberto
%T Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 483-500
%V 18
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011102/
%R 10.1051/cocv/2011102
%G en
%F COCV_2012__18_2_483_0
Papa Quiroz, Erik A.; Oliveira, P. Roberto. Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 483-500. doi: 10.1051/cocv/2011102

Cité par Sources :