Voir la notice de l'article provenant de la source Numdam
Second-order sufficient conditions of a bounded strong minimum are derived for optimal control problems of ordinary differential equations with initial-final state constraints of equality and inequality type and control constraints of inequality type. The conditions are stated in terms of quadratic forms associated with certain tuples of Lagrange multipliers. Under the assumption of linear independence of gradients of active control constraints they guarantee the bounded strong quadratic growth of the so-called “violation function”. Together with corresponding necessary conditions they constitute a no-gap pair of conditions.
@article{COCV_2012__18_2_452_0, author = {Osmolovskii, Nikolai P.}, title = {Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {452--482}, publisher = {EDP-Sciences}, volume = {18}, number = {2}, year = {2012}, doi = {10.1051/cocv/2011101}, mrnumber = {2954634}, zbl = {1246.49017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011101/} }
TY - JOUR AU - Osmolovskii, Nikolai P. TI - Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 452 EP - 482 VL - 18 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011101/ DO - 10.1051/cocv/2011101 LA - en ID - COCV_2012__18_2_452_0 ER -
%0 Journal Article %A Osmolovskii, Nikolai P. %T Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 452-482 %V 18 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2011101/ %R 10.1051/cocv/2011101 %G en %F COCV_2012__18_2_452_0
Osmolovskii, Nikolai P. Second-order sufficient optimality conditions for control problems with linearly independent gradients of control constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 452-482. doi: 10.1051/cocv/2011101
Cité par Sources :