Voir la notice de l'article provenant de la source Numdam
The Aviles Giga functional is a well known second order functional that forms a model for blistering and in a certain regime liquid crystals, a related functional models thin magnetized films. Given Lipschitz domain the functional is where belongs to the subset of functions in whose gradient (in the sense of trace) satisfies where is the inward pointing unit normal to at . In [Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002) 187-202] Jabin et al. characterized a class of functions which includes all limits of sequences with as . A corollary to their work is that if there exists such a sequence for a bounded domain , then must be a ball and (up to change of sign) . Recently [Lorent, Ann. Sc. Norm. Super. Pisa Cl. Sci. (submitted), http://arxiv.org/abs/0902.0154v1] we provided a quantitative generalization of this corollary over the space of convex domains using ‘compensated compactness' inspired calculations of DeSimone et al. [Proc. Soc. Edinb. Sect. A 131 (2001) 833-844]. In this note we use methods of regularity theory and ODE to provide a sharper estimate and a much simpler proof for the case where without the requiring the trace condition on .
@article{COCV_2012__18_2_383_0, author = {Lorent, Andrew}, title = {A simple proof of the characterization of functions of low {Aviles} {Giga} energy on a ball \protect\emph{via }regularity}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {383--400}, publisher = {EDP-Sciences}, volume = {18}, number = {2}, year = {2012}, doi = {10.1051/cocv/2010102}, zbl = {1259.49077}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010102/} }
TY - JOUR AU - Lorent, Andrew TI - A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 383 EP - 400 VL - 18 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010102/ DO - 10.1051/cocv/2010102 LA - en ID - COCV_2012__18_2_383_0 ER -
%0 Journal Article %A Lorent, Andrew %T A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 383-400 %V 18 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010102/ %R 10.1051/cocv/2010102 %G en %F COCV_2012__18_2_383_0
Lorent, Andrew. A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 383-400. doi: 10.1051/cocv/2010102
Cité par Sources :