Voir la notice de l'article provenant de la source Numdam
This article considers the linear 1-d Schrödinger equation in (0,π) perturbed by a vanishing viscosity term depending on a small parameter ε > 0. We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls vε as ε goes to zero. It is shown that, for any time T sufficiently large but independent of ε and for each initial datum in H-1(0,π), there exists a uniformly bounded family of controls (vε)ε in L2(0, T) acting on the extremity x = π. Any weak limit of this family is a control for the Schrödinger equation.
@article{COCV_2012__18_1_277_0, author = {Micu, Sorin and Roven\c{t}a, Ionel}, title = {Uniform controllability of the linear one dimensional {Schr\"odinger} equation with vanishing viscosity}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {277--293}, publisher = {EDP-Sciences}, volume = {18}, number = {1}, year = {2012}, doi = {10.1051/cocv/2010055}, mrnumber = {2887936}, zbl = {1242.93019}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010055/} }
TY - JOUR AU - Micu, Sorin AU - Rovenţa, Ionel TI - Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 277 EP - 293 VL - 18 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010055/ DO - 10.1051/cocv/2010055 LA - en ID - COCV_2012__18_1_277_0 ER -
%0 Journal Article %A Micu, Sorin %A Rovenţa, Ionel %T Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 277-293 %V 18 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010055/ %R 10.1051/cocv/2010055 %G en %F COCV_2012__18_1_277_0
Micu, Sorin; Rovenţa, Ionel. Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 277-293. doi: 10.1051/cocv/2010055
Cité par Sources :