Global optimality conditions for a dynamic blocking problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 124-156

Voir la notice de l'article provenant de la source Numdam

The paper is concerned with a class of optimal blocking problems in the plane. We consider a time dependent set R(t) ⊂ ℝ2, described as the reachable set for a differential inclusion. To restrict its growth, a barrier Γ can be constructed, in real time. This is a one-dimensional rectifiable set which blocks the trajectories of the differential inclusion. In this paper we introduce a definition of “regular strategy”, based on a careful classification of blocking arcs. Moreover, we derive local and global necessary conditions for an optimal strategy, which minimizes the total value of the burned region plus the cost of constructing the barrier. We show that a Lagrange multiplier, corresponding to the constraint on the construction speed, can be interpreted as the “instantaneous value of time”. This value, which we compute by two separate formulas, remains constant when free arcs are constructed and is monotone decreasing otherwise.

DOI : 10.1051/cocv/2010053
Classification : 49J24, 49K24
Keywords: dynamic blocking problem, optimality conditions, differential inclusion with obstacles
@article{COCV_2012__18_1_124_0,
     author = {Bressan, Alberto and Wang, Tao},
     title = {Global optimality conditions for a dynamic blocking problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {124--156},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {1},
     year = {2012},
     doi = {10.1051/cocv/2010053},
     mrnumber = {2887930},
     zbl = {1258.49030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010053/}
}
TY  - JOUR
AU  - Bressan, Alberto
AU  - Wang, Tao
TI  - Global optimality conditions for a dynamic blocking problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 124
EP  - 156
VL  - 18
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010053/
DO  - 10.1051/cocv/2010053
LA  - en
ID  - COCV_2012__18_1_124_0
ER  - 
%0 Journal Article
%A Bressan, Alberto
%A Wang, Tao
%T Global optimality conditions for a dynamic blocking problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 124-156
%V 18
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010053/
%R 10.1051/cocv/2010053
%G en
%F COCV_2012__18_1_124_0
Bressan, Alberto; Wang, Tao. Global optimality conditions for a dynamic blocking problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 124-156. doi: 10.1051/cocv/2010053

Cité par Sources :