Weak notions of jacobian determinant and relaxation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 181-207

Voir la notice de l'article provenant de la source Numdam

In this paper we study two weak notions of Jacobian determinant for Sobolev maps, namely the distributional Jacobian and the relaxed total variation, which in general could be different. We show some cases of equality and use them to give an explicit expression for the relaxation of some polyconvex functionals.

DOI : 10.1051/cocv/2010047
Classification : 49J45, 28A75
Keywords: distributional determinant, topological degree, relaxation
@article{COCV_2012__18_1_181_0,
     author = {De Philippis, Guido},
     title = {Weak notions of jacobian determinant and relaxation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {181--207},
     publisher = {EDP-Sciences},
     volume = {18},
     number = {1},
     year = {2012},
     doi = {10.1051/cocv/2010047},
     mrnumber = {2887932},
     zbl = {1242.49025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010047/}
}
TY  - JOUR
AU  - De Philippis, Guido
TI  - Weak notions of jacobian determinant and relaxation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2012
SP  - 181
EP  - 207
VL  - 18
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010047/
DO  - 10.1051/cocv/2010047
LA  - en
ID  - COCV_2012__18_1_181_0
ER  - 
%0 Journal Article
%A De Philippis, Guido
%T Weak notions of jacobian determinant and relaxation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2012
%P 181-207
%V 18
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010047/
%R 10.1051/cocv/2010047
%G en
%F COCV_2012__18_1_181_0
De Philippis, Guido. Weak notions of jacobian determinant and relaxation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 181-207. doi: 10.1051/cocv/2010047

Cité par Sources :