Voir la notice de l'article provenant de la source Numdam
Exact controllability results for a multilayer plate system are obtained from the method of Carleman estimates. The multilayer plate system is a natural multilayer generalization of a classical three-layer “sandwich plate” system due to Rao and Nakra. The multilayer version involves a number of Lamé systems for plane elasticity coupled with a scalar Kirchhoff plate equation. The plate is assumed to be either clamped or hinged and controls are assumed to be locally distributed in a neighborhood of a portion of the boundary. The Carleman estimates developed for the coupled system are based on some new Carleman estimates for the Kirchhoff plate as well as some known Carleman estimates due to Imanuvilov and Yamamoto for the Lamé system.
@article{COCV_2011__17_4_1101_0, author = {Hansen, Scott W. and Imanuvilov, Oleg}, title = {Exact controllability of a multilayer {Rao-Nakra} plate with clamped boundary conditions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1101--1132}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010040}, mrnumber = {2859867}, zbl = {1238.93012}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010040/} }
TY - JOUR AU - Hansen, Scott W. AU - Imanuvilov, Oleg TI - Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 1101 EP - 1132 VL - 17 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010040/ DO - 10.1051/cocv/2010040 LA - en ID - COCV_2011__17_4_1101_0 ER -
%0 Journal Article %A Hansen, Scott W. %A Imanuvilov, Oleg %T Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 1101-1132 %V 17 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010040/ %R 10.1051/cocv/2010040 %G en %F COCV_2011__17_4_1101_0
Hansen, Scott W.; Imanuvilov, Oleg. Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1101-1132. doi : 10.1051/cocv/2010040. http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010040/
[1] Mathematical Analysis and Numerical Methods for Science and Technology, Volume 5: Evolution Problems I. Springer-Verlag (1992). | Zbl | MR
and (with collaboration of M. Artola, M. Cessenat, H. Lanchon),[2] Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. J. Appl. Mech. 32 (1965) 881-886.
,[3] Several related models for multilayer sandwich plates. Math. Models Methods Appl. Sci. 14 (2004) 1103-1132. | Zbl | MR
,[4] Semigroup well-posedness of a multilayer Mead-Markus plate with shear damping, in Control and Boundary Analysis, Lect. Not. Pure Appl. Math. 240, Chapman & Hall/CRC, Boca Raton (2005) 243-256. | Zbl | MR
,[5] Riesz basis property and related results for a Rao-Nakra sandwich beam. Discrete Contin. Dynam. Syst. Suppl. (2005) 365-375. | Zbl | MR
and ,[6] Linear Partial Differential Equations. Springer-Verlag, Berlin (1963).
,[7] On Carleman estimates for hyperbolic equations. Asymptotic Anal. 32 (2002) 185-220. | Zbl | MR
,[8] Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems. Int. Math. Res. Not. 16 (2003) 883-913. | Zbl | MR
and ,[9] Carleman estimates and the non-stationary Lamé system and the application to an inverse problem. ESIAM: COCV 11 (2005) 1-56. | Zbl | MR | mathdoc-id
and ,[10] Carleman estimates for the three dimensional Lamé system and applications to an inverse problem, in Control Theory of Partial Differential Equations, Lect. Notes Pure. Appl. Math. 242 (2005) 337-374. | Zbl | MR
and ,[11] Carleman estimates for the Lamé system with stress boundary conditions and the application to an inverse problem. Publications of the Research Institute for Mathematical Sciences Kyoto University 43 (2007) 1023-1093. | Zbl | MR
and ,[12] A new method of exact controllability in short time and applications. Ann. Fac. Sci. Toulouse Math. 10 (1989) 415-464. | Zbl | MR | mathdoc-id
,[13] Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics 10. Society for Industrial and Applied Mathematics (1989). | Zbl | MR
,[14] Modelling, Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées RMA 6. Springer-Verlag (1989). | Zbl | MR
and ,[15] Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only on Δw|Σ. J. Differ. Eqn. 93 (1991) 62-101. | Zbl | MR
and ,[16] Sharp regularity for elastic and thermoelastic Kirchoff equations with free boundary conditions. Rocky Mountain J. Math. 30 (2000) 981-1024. | Zbl | MR
and ,[17] Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag (1971). | Zbl | MR
,[18] Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1-68. | Zbl | MR
,[19] The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vibr. 10 (1969) 163-175. | Zbl
and ,[20] Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores. J. Sound Vibr. 34 (1974) 309-326. | Zbl
and ,[21] Exact boundary controllability results for a Rao-Nakra sandwich beam. Systems Control Lett. 56 (2007) 558-567. | Zbl | MR
,[22] Null-controllability of a damped Mead-Markus sandwich beam. Discrete Contin. Dynam. Syst. Suppl. (2005) 746-755. | Zbl | MR
and ,[23] Vibration Damping of Structural Elements. Prentice Hall (1995). | Zbl
and ,[24] Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures. Appl. 75 (1996) 367-408. | Zbl | MR
,[25] Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities. SIAM J. Control Optim. 39 (2000) 812-834. | Zbl | MR
,Cité par Sources :