Voir la notice de l'article provenant de la source Numdam
In this paper, a estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on , or on a regular bounded open set of . The proof is based partially on the Strauss inequality [Strauss, Partial Differential Equations: Proc. Symp. Pure Math. 23 (1973) 207-214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur. Math. Soc. 9 (2007) 277-315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions which read as the divergence of a measure, and to prove an existence result for the stationary Navier-Stokes equation when the viscosity tensor is only in L1.
@article{COCV_2011__17_4_1066_0, author = {Briane, Marc and Casado-D{\'\i}az, Juan}, title = {Estimate of the pressure when its gradient is the divergence of a measure. {Applications}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1066--1087}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010037}, mrnumber = {2859865}, zbl = {1232.35113}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010037/} }
TY - JOUR AU - Briane, Marc AU - Casado-Díaz, Juan TI - Estimate of the pressure when its gradient is the divergence of a measure. Applications JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 1066 EP - 1087 VL - 17 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010037/ DO - 10.1051/cocv/2010037 LA - en ID - COCV_2011__17_4_1066_0 ER -
%0 Journal Article %A Briane, Marc %A Casado-Díaz, Juan %T Estimate of the pressure when its gradient is the divergence of a measure. Applications %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 1066-1087 %V 17 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010037/ %R 10.1051/cocv/2010037 %G en %F COCV_2011__17_4_1066_0
Briane, Marc; Casado-Díaz, Juan. Estimate of the pressure when its gradient is the divergence of a measure. Applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1066-1087. doi: 10.1051/cocv/2010037
Cité par Sources :