Voir la notice de l'article provenant de la source Numdam
We consider the Dirichlet Laplacian in a thin curved three-dimensional rod. The rod is finite. Its cross-section is constant and small, and rotates along the reference curve in an arbitrary way. We find a two-parametric set of the eigenvalues of such operator and construct their complete asymptotic expansions. We show that this two-parametric set contains any prescribed number of the first eigenvalues of the considered operator. We obtain the complete asymptotic expansions for the eigenfunctions associated with these first eigenvalues.
@article{COCV_2011__17_3_887_0, author = {Borisov, Denis and Cardone, Giuseppe}, title = {Complete asymptotic expansions for eigenvalues of {Dirichlet} laplacian in thin three-dimensional rods}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {887--908}, publisher = {EDP-Sciences}, volume = {17}, number = {3}, year = {2011}, doi = {10.1051/cocv/2010028}, mrnumber = {2826984}, zbl = {1223.35248}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010028/} }
TY - JOUR AU - Borisov, Denis AU - Cardone, Giuseppe TI - Complete asymptotic expansions for eigenvalues of Dirichlet laplacian in thin three-dimensional rods JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 887 EP - 908 VL - 17 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010028/ DO - 10.1051/cocv/2010028 LA - en ID - COCV_2011__17_3_887_0 ER -
%0 Journal Article %A Borisov, Denis %A Cardone, Giuseppe %T Complete asymptotic expansions for eigenvalues of Dirichlet laplacian in thin three-dimensional rods %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 887-908 %V 17 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010028/ %R 10.1051/cocv/2010028 %G en %F COCV_2011__17_3_887_0
Borisov, Denis; Cardone, Giuseppe. Complete asymptotic expansions for eigenvalues of Dirichlet laplacian in thin three-dimensional rods. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 887-908. doi: 10.1051/cocv/2010028
Cité par Sources :