Voir la notice de l'article provenant de la source Numdam
In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness of a solution for the discrete equation is an open problem.
@article{COCV_2011__17_3_771_0, author = {Casas, Eduardo and Tr\"oltzsch, Fredi}, title = {Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {771--800}, publisher = {EDP-Sciences}, volume = {17}, number = {3}, year = {2011}, doi = {10.1051/cocv/2010025}, mrnumber = {2826980}, zbl = {1228.49033}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010025/} }
TY - JOUR AU - Casas, Eduardo AU - Tröltzsch, Fredi TI - Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 771 EP - 800 VL - 17 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010025/ DO - 10.1051/cocv/2010025 LA - en ID - COCV_2011__17_3_771_0 ER -
%0 Journal Article %A Casas, Eduardo %A Tröltzsch, Fredi %T Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 771-800 %V 17 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010025/ %R 10.1051/cocv/2010025 %G en %F COCV_2011__17_3_771_0
Casas, Eduardo; Tröltzsch, Fredi. Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 771-800. doi: 10.1051/cocv/2010025
Cité par Sources :