Voir la notice de l'article provenant de la source Numdam
We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.
@article{COCV_2011__17_2_575_0, author = {Patrizi, Stefania}, title = {The principal eigenvalue of the $\infty $-laplacian with the {Neumann} boundary condition}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {575--601}, publisher = {EDP-Sciences}, volume = {17}, number = {2}, year = {2011}, doi = {10.1051/cocv/2010019}, mrnumber = {2801332}, zbl = {1219.35074}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010019/} }
TY - JOUR AU - Patrizi, Stefania TI - The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 575 EP - 601 VL - 17 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010019/ DO - 10.1051/cocv/2010019 LA - en ID - COCV_2011__17_2_575_0 ER -
%0 Journal Article %A Patrizi, Stefania %T The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 575-601 %V 17 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010019/ %R 10.1051/cocv/2010019 %G en %F COCV_2011__17_2_575_0
Patrizi, Stefania. The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 575-601. doi: 10.1051/cocv/2010019
Cité par Sources :