The principal eigenvalue of the -laplacian with the Neumann boundary condition
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 575-601

Voir la notice de l'article provenant de la source Numdam

We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.

DOI : 10.1051/cocv/2010019
Classification : 35J25, 35D40, 35P30, 35J60
Keywords: ∞-laplacian, Neumann boundary condition, principal eigenvalue, viscosity solutions
@article{COCV_2011__17_2_575_0,
     author = {Patrizi, Stefania},
     title = {The principal eigenvalue of the $\infty $-laplacian with the {Neumann} boundary condition},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {575--601},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {2},
     year = {2011},
     doi = {10.1051/cocv/2010019},
     mrnumber = {2801332},
     zbl = {1219.35074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010019/}
}
TY  - JOUR
AU  - Patrizi, Stefania
TI  - The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 575
EP  - 601
VL  - 17
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010019/
DO  - 10.1051/cocv/2010019
LA  - en
ID  - COCV_2011__17_2_575_0
ER  - 
%0 Journal Article
%A Patrizi, Stefania
%T The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 575-601
%V 17
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010019/
%R 10.1051/cocv/2010019
%G en
%F COCV_2011__17_2_575_0
Patrizi, Stefania. The principal eigenvalue of the $\infty $-laplacian with the Neumann boundary condition. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 575-601. doi: 10.1051/cocv/2010019

Cité par Sources :