Partial regularity of minimizers of higher order integrals with -growth
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 472-492
Voir la notice de l'article provenant de la source Numdam
We consider higher order functionals of the form where the integrand , m ≥ 1 is strictly quasiconvex and satisfies a non-standard growth condition. More precisely we assume that f fulfills the (p, q)-growth condition
DOI :
10.1051/cocv/2010016
Classification :
49N60, 49N99, 49J45
Keywords: higher order functionals, non-standard growth, regularity theory
Keywords: higher order functionals, non-standard growth, regularity theory
@article{COCV_2011__17_2_472_0,
author = {Schemm, Sabine},
title = {Partial regularity of minimizers of higher order integrals with $(p, q)$-growth},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {472--492},
publisher = {EDP-Sciences},
volume = {17},
number = {2},
year = {2011},
doi = {10.1051/cocv/2010016},
zbl = {1248.49053},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010016/}
}
TY - JOUR AU - Schemm, Sabine TI - Partial regularity of minimizers of higher order integrals with $(p, q)$-growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 472 EP - 492 VL - 17 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010016/ DO - 10.1051/cocv/2010016 LA - en ID - COCV_2011__17_2_472_0 ER -
%0 Journal Article %A Schemm, Sabine %T Partial regularity of minimizers of higher order integrals with $(p, q)$-growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 472-492 %V 17 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010016/ %R 10.1051/cocv/2010016 %G en %F COCV_2011__17_2_472_0
Schemm, Sabine. Partial regularity of minimizers of higher order integrals with $(p, q)$-growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 472-492. doi: 10.1051/cocv/2010016
Cité par Sources :