Voir la notice de l'article provenant de la source Numdam
The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper is to directly discretize the variational description of the system's motion. The resulting optimization algorithm lets the discrete solution directly inherit characteristic structural properties from the continuous one like symmetries and integrals of the motion. We show that the DMOC (Discrete Mechanics and Optimal Control) approach is equivalent to a finite difference discretization of Hamilton's equations by a symplectic partitioned Runge-Kutta scheme and employ this fact in order to give a proof of convergence. The numerical performance of DMOC and its relationship to other existing optimal control methods are investigated.
@article{COCV_2011__17_2_322_0, author = {Ober-Bl\"obaum, Sina and Junge, Oliver and Marsden, Jerrold E.}, title = {Discrete mechanics and optimal control: {An} analysis}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {322--352}, publisher = {EDP-Sciences}, volume = {17}, number = {2}, year = {2011}, doi = {10.1051/cocv/2010012}, mrnumber = {2801322}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010012/} }
TY - JOUR AU - Ober-Blöbaum, Sina AU - Junge, Oliver AU - Marsden, Jerrold E. TI - Discrete mechanics and optimal control: An analysis JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 322 EP - 352 VL - 17 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010012/ DO - 10.1051/cocv/2010012 LA - en ID - COCV_2011__17_2_322_0 ER -
%0 Journal Article %A Ober-Blöbaum, Sina %A Junge, Oliver %A Marsden, Jerrold E. %T Discrete mechanics and optimal control: An analysis %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 322-352 %V 17 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010012/ %R 10.1051/cocv/2010012 %G en %F COCV_2011__17_2_322_0
Ober-Blöbaum, Sina; Junge, Oliver; Marsden, Jerrold E. Discrete mechanics and optimal control: An analysis. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 322-352. doi: 10.1051/cocv/2010012
Cité par Sources :