Discrete mechanics and optimal control: An analysis
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 322-352

Voir la notice de l'article provenant de la source Numdam

The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper is to directly discretize the variational description of the system's motion. The resulting optimization algorithm lets the discrete solution directly inherit characteristic structural properties from the continuous one like symmetries and integrals of the motion. We show that the DMOC (Discrete Mechanics and Optimal Control) approach is equivalent to a finite difference discretization of Hamilton's equations by a symplectic partitioned Runge-Kutta scheme and employ this fact in order to give a proof of convergence. The numerical performance of DMOC and its relationship to other existing optimal control methods are investigated.

DOI : 10.1051/cocv/2010012
Classification : 49M25, 49N99, 65K10
Keywords: optimal control, discrete mechanics, discrete variational principle, convergence
@article{COCV_2011__17_2_322_0,
     author = {Ober-Bl\"obaum, Sina and Junge, Oliver and Marsden, Jerrold E.},
     title = {Discrete mechanics and optimal control: {An} analysis},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {322--352},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {2},
     year = {2011},
     doi = {10.1051/cocv/2010012},
     mrnumber = {2801322},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010012/}
}
TY  - JOUR
AU  - Ober-Blöbaum, Sina
AU  - Junge, Oliver
AU  - Marsden, Jerrold E.
TI  - Discrete mechanics and optimal control: An analysis
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 322
EP  - 352
VL  - 17
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010012/
DO  - 10.1051/cocv/2010012
LA  - en
ID  - COCV_2011__17_2_322_0
ER  - 
%0 Journal Article
%A Ober-Blöbaum, Sina
%A Junge, Oliver
%A Marsden, Jerrold E.
%T Discrete mechanics and optimal control: An analysis
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 322-352
%V 17
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010012/
%R 10.1051/cocv/2010012
%G en
%F COCV_2011__17_2_322_0
Ober-Blöbaum, Sina; Junge, Oliver; Marsden, Jerrold E. Discrete mechanics and optimal control: An analysis. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 322-352. doi: 10.1051/cocv/2010012

Cité par Sources :