Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 380-405

Voir la notice de l'article provenant de la source Numdam

We propose a general reduced-order filtering strategy adapted to Unscented Kalman Filtering for any choice of sampling points distribution. This provides tractable filtering algorithms which can be used with large-dimensional systems when the uncertainty space is of reduced size, and these algorithms only invoke the original dynamical and observation operators, namely, they do not require tangent operator computations, which of course is of considerable benefit when nonlinear operators are considered. The algorithms are derived in discrete time as in the classical UKF formalism - well-adapted to time discretized dynamical equations - and then extended into consistent continuous-time versions. This reduced-order filtering approach can be used in particular for the estimation of parameters in large dynamical systems arising from the discretization of partial differential equations, when state estimation can be handled by an adequate Luenberger observer inspired from feedback control. In this case, we give an analysis of the joint state-parameter estimation procedure based on linearized error, and we illustrate the effectiveness of the approach using a test problem inspired from cardiac biomechanics.

DOI : 10.1051/cocv/2010006
Classification : 93E11, 93B30, 35R30, 74H15
Keywords: filtering, data assimilation, state and parameter estimation, identification in PDEs
@article{COCV_2011__17_2_380_0,
     author = {Moireau, Philippe and Chapelle, Dominique},
     title = {Reduced-order {Unscented} {Kalman} {Filtering} with application to parameter identification in large-dimensional systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {380--405},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {2},
     year = {2011},
     doi = {10.1051/cocv/2010006},
     mrnumber = {2801324},
     zbl = {1243.93114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010006/}
}
TY  - JOUR
AU  - Moireau, Philippe
AU  - Chapelle, Dominique
TI  - Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 380
EP  - 405
VL  - 17
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010006/
DO  - 10.1051/cocv/2010006
LA  - en
ID  - COCV_2011__17_2_380_0
ER  - 
%0 Journal Article
%A Moireau, Philippe
%A Chapelle, Dominique
%T Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 380-405
%V 17
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010006/
%R 10.1051/cocv/2010006
%G en
%F COCV_2011__17_2_380_0
Moireau, Philippe; Chapelle, Dominique. Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 2, pp. 380-405. doi: 10.1051/cocv/2010006

Cité par Sources :