Monotonicity properties of minimizers and relaxation for autonomous variational problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 222-242
Voir la notice de l'article provenant de la source Numdam
We consider the following classical autonomous variational problem
DOI :
10.1051/cocv/2010001
Classification :
49K05, 49J05
Keywords: nonconvex variational problems, autonomous variational problems, existence of minimizers, Dubois-Reymond necessary condition, relaxation
Keywords: nonconvex variational problems, autonomous variational problems, existence of minimizers, Dubois-Reymond necessary condition, relaxation
@article{COCV_2011__17_1_222_0,
author = {Cupini, Giovanni and Marcelli, Cristina},
title = {Monotonicity properties of minimizers and relaxation for autonomous variational problems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {222--242},
publisher = {EDP-Sciences},
volume = {17},
number = {1},
year = {2011},
doi = {10.1051/cocv/2010001},
mrnumber = {2775194},
zbl = {1213.49028},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010001/}
}
TY - JOUR AU - Cupini, Giovanni AU - Marcelli, Cristina TI - Monotonicity properties of minimizers and relaxation for autonomous variational problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 222 EP - 242 VL - 17 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010001/ DO - 10.1051/cocv/2010001 LA - en ID - COCV_2011__17_1_222_0 ER -
%0 Journal Article %A Cupini, Giovanni %A Marcelli, Cristina %T Monotonicity properties of minimizers and relaxation for autonomous variational problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 222-242 %V 17 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010001/ %R 10.1051/cocv/2010001 %G en %F COCV_2011__17_1_222_0
Cupini, Giovanni; Marcelli, Cristina. Monotonicity properties of minimizers and relaxation for autonomous variational problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 222-242. doi: 10.1051/cocv/2010001
Cité par Sources :