Monotonicity properties of minimizers and relaxation for autonomous variational problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 222-242

Voir la notice de l'article provenant de la source Numdam

We consider the following classical autonomous variational problem

minimize F(v)= a b f(v(x),v ' (x))x̣:vAC([a,b]),v(a)=α,v(b)=β,
where the Lagrangian f is possibly neither continuous, nor convex, nor coercive. We prove a monotonicity property of the minimizers stating that they satisfy the maximum principle or the minimum one. By virtue of such a property, applying recent results concerning constrained variational problems, we derive a relaxation theorem, the DuBois-Reymond necessary condition and some existence or non-existence criteria.

DOI : 10.1051/cocv/2010001
Classification : 49K05, 49J05
Keywords: nonconvex variational problems, autonomous variational problems, existence of minimizers, Dubois-Reymond necessary condition, relaxation
@article{COCV_2011__17_1_222_0,
     author = {Cupini, Giovanni and Marcelli, Cristina},
     title = {Monotonicity properties of minimizers and relaxation for autonomous variational problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {222--242},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {1},
     year = {2011},
     doi = {10.1051/cocv/2010001},
     mrnumber = {2775194},
     zbl = {1213.49028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010001/}
}
TY  - JOUR
AU  - Cupini, Giovanni
AU  - Marcelli, Cristina
TI  - Monotonicity properties of minimizers and relaxation for autonomous variational problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 222
EP  - 242
VL  - 17
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010001/
DO  - 10.1051/cocv/2010001
LA  - en
ID  - COCV_2011__17_1_222_0
ER  - 
%0 Journal Article
%A Cupini, Giovanni
%A Marcelli, Cristina
%T Monotonicity properties of minimizers and relaxation for autonomous variational problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 222-242
%V 17
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2010001/
%R 10.1051/cocv/2010001
%G en
%F COCV_2011__17_1_222_0
Cupini, Giovanni; Marcelli, Cristina. Monotonicity properties of minimizers and relaxation for autonomous variational problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 222-242. doi: 10.1051/cocv/2010001

Cité par Sources :