Weighted energy-dissipation functionals for gradient flows
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 52-85

Voir la notice de l'article provenant de la source Numdam

We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV 14 (2008) 494-516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from [S. Conti and M. Ortiz, J. Mech. Phys. Solids 56 (2008) 1885-1904.].

DOI : 10.1051/cocv/2009043
Classification : 35K55
Keywords: variational principle, gradient flow, convergence
@article{COCV_2011__17_1_52_0,
     author = {Mielke, Alexander and Stefanelli, Ulisse},
     title = {Weighted energy-dissipation functionals for gradient flows},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {52--85},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {1},
     year = {2011},
     doi = {10.1051/cocv/2009043},
     mrnumber = {2775186},
     zbl = {1218.35007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009043/}
}
TY  - JOUR
AU  - Mielke, Alexander
AU  - Stefanelli, Ulisse
TI  - Weighted energy-dissipation functionals for gradient flows
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 52
EP  - 85
VL  - 17
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009043/
DO  - 10.1051/cocv/2009043
LA  - en
ID  - COCV_2011__17_1_52_0
ER  - 
%0 Journal Article
%A Mielke, Alexander
%A Stefanelli, Ulisse
%T Weighted energy-dissipation functionals for gradient flows
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 52-85
%V 17
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009043/
%R 10.1051/cocv/2009043
%G en
%F COCV_2011__17_1_52_0
Mielke, Alexander; Stefanelli, Ulisse. Weighted energy-dissipation functionals for gradient flows. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 52-85. doi: 10.1051/cocv/2009043

Cité par Sources :