Voir la notice de l'article provenant de la source Numdam
One shows that the linearized Navier-Stokes equation in , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller , , where are independent Brownian motions in a probability space and is a system of functions on with support in an arbitrary open subset . The stochastic control input is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability the equilibrium solution.
@article{COCV_2011__17_1_117_0, author = {Barbu, Viorel}, title = {The internal stabilization by noise of the linearized {Navier-Stokes} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {117--130}, publisher = {EDP-Sciences}, volume = {17}, number = {1}, year = {2011}, doi = {10.1051/cocv/2009042}, mrnumber = {2775189}, zbl = {1210.35302}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009042/} }
TY - JOUR AU - Barbu, Viorel TI - The internal stabilization by noise of the linearized Navier-Stokes equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 117 EP - 130 VL - 17 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009042/ DO - 10.1051/cocv/2009042 LA - en ID - COCV_2011__17_1_117_0 ER -
%0 Journal Article %A Barbu, Viorel %T The internal stabilization by noise of the linearized Navier-Stokes equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 117-130 %V 17 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009042/ %R 10.1051/cocv/2009042 %G en %F COCV_2011__17_1_117_0
Barbu, Viorel. The internal stabilization by noise of the linearized Navier-Stokes equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 117-130. doi: 10.1051/cocv/2009042
Cité par Sources :