On a semilinear variational problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 86-101
Cet article a éte moissonné depuis la source Numdam
We provide a detailed analysis of the minimizers of the functional , , subject to the constraint . This problem, e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties of the minimizers and also study their behavior near the critical exponent 2.
DOI :
10.1051/cocv/2009038
Classification :
35J20, 49J45, 35Q55
Keywords: nonlinear minimum problem, parabolic Anderson model, variational methods, gamma-convergence, ground state solutions
Keywords: nonlinear minimum problem, parabolic Anderson model, variational methods, gamma-convergence, ground state solutions
@article{COCV_2011__17_1_86_0,
author = {Schmidt, Bernd},
title = {On a semilinear variational problem},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {86--101},
year = {2011},
publisher = {EDP-Sciences},
volume = {17},
number = {1},
doi = {10.1051/cocv/2009038},
mrnumber = {2775187},
zbl = {1213.35222},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009038/}
}
TY - JOUR AU - Schmidt, Bernd TI - On a semilinear variational problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 86 EP - 101 VL - 17 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009038/ DO - 10.1051/cocv/2009038 LA - en ID - COCV_2011__17_1_86_0 ER -
Schmidt, Bernd. On a semilinear variational problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 86-101. doi: 10.1051/cocv/2009038
Cité par Sources :