Voir la notice de l'article provenant de la source Numdam
We provide a detailed analysis of the minimizers of the functional , , subject to the constraint . This problem, e.g., describes the long-time behavior of the parabolic Anderson in probability theory or ground state solutions of a nonlinear Schrödinger equation. While existence can be proved with standard methods, we show that the usual uniqueness results obtained with PDE-methods can be considerably simplified by additional variational arguments. In addition, we investigate qualitative properties of the minimizers and also study their behavior near the critical exponent 2.
@article{COCV_2011__17_1_86_0, author = {Schmidt, Bernd}, title = {On a semilinear variational problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {86--101}, publisher = {EDP-Sciences}, volume = {17}, number = {1}, year = {2011}, doi = {10.1051/cocv/2009038}, mrnumber = {2775187}, zbl = {1213.35222}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009038/} }
TY - JOUR AU - Schmidt, Bernd TI - On a semilinear variational problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 86 EP - 101 VL - 17 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009038/ DO - 10.1051/cocv/2009038 LA - en ID - COCV_2011__17_1_86_0 ER -
Schmidt, Bernd. On a semilinear variational problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 86-101. doi: 10.1051/cocv/2009038
Cité par Sources :