Voir la notice de l'article provenant de la source Numdam
Homogenization of integral functionals is studied under the constraint that admissible maps have to take their values into a given smooth manifold. The notion of tangential homogenization is defined by analogy with the tangential quasiconvexity introduced by Dacorogna et al. [Calc. Var. Part. Diff. Eq. 9 (1999) 185-206]. For energies with superlinear or linear growth, a Γ-convergence result is established in Sobolev spaces, the homogenization problem in the space of functions of bounded variation being the object of [Babadjian and Millot, Calc. Var. Part. Diff. Eq. 36 (2009) 7-47].
@article{COCV_2010__16_4_833_0, author = {Babadjian, Jean-Fran\c{c}ois and Millot, Vincent}, title = {Homogenization of variational problems in manifold valued {Sobolev} spaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {833--855}, publisher = {EDP-Sciences}, volume = {16}, number = {4}, year = {2010}, doi = {10.1051/cocv/2009025}, mrnumber = {2744153}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009025/} }
TY - JOUR AU - Babadjian, Jean-François AU - Millot, Vincent TI - Homogenization of variational problems in manifold valued Sobolev spaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 833 EP - 855 VL - 16 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009025/ DO - 10.1051/cocv/2009025 LA - en ID - COCV_2010__16_4_833_0 ER -
%0 Journal Article %A Babadjian, Jean-François %A Millot, Vincent %T Homogenization of variational problems in manifold valued Sobolev spaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 833-855 %V 16 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009025/ %R 10.1051/cocv/2009025 %G en %F COCV_2010__16_4_833_0
Babadjian, Jean-François; Millot, Vincent. Homogenization of variational problems in manifold valued Sobolev spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 4, pp. 833-855. doi: 10.1051/cocv/2009025
Cité par Sources :