Voir la notice de l'article provenant de la source Numdam
This article is devoted to the optimal control of state equations with memory of the form: with initial conditions . Denoting by the solution of the previous Cauchy problem and: where V is a class of admissible controls, we prove that v is the only viscosity solution of an Hamilton-Jacobi-Bellman equation of the form: in the sense of the theory of viscosity solutions in infinite-dimensions of Crandall and Lions.
@article{COCV_2010__16_3_744_0, author = {Carlier, Guillaume and Tahraoui, Rabah}, title = {Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {744--763}, publisher = {EDP-Sciences}, volume = {16}, number = {3}, year = {2010}, doi = {10.1051/cocv/2009024}, mrnumber = {2674635}, zbl = {1195.49032}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009024/} }
TY - JOUR AU - Carlier, Guillaume AU - Tahraoui, Rabah TI - Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 744 EP - 763 VL - 16 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009024/ DO - 10.1051/cocv/2009024 LA - en ID - COCV_2010__16_3_744_0 ER -
%0 Journal Article %A Carlier, Guillaume %A Tahraoui, Rabah %T Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 744-763 %V 16 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/cocv/2009024/ %R 10.1051/cocv/2009024 %G en %F COCV_2010__16_3_744_0
Carlier, Guillaume; Tahraoui, Rabah. Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 744-763. doi: 10.1051/cocv/2009024
Cité par Sources :