Fully discrete error estimation by the method of lines for a nonlinear parabolic problem
Applications of Mathematics, Tome 48 (2003) no. 2, pp. 129-151.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A posteriori error estimates for a nonlinear parabolic problem are introduced. A fully discrete scheme is studied. The space discretization is based on a concept of hierarchical finite element basis functions. The time discretization is done using singly implicit Runge-Kutta method (SIRK). The convergence of the effectivity index is proven.
DOI : 10.1023/A:1026094127440
Classification : 65L06, 65M15, 65M20, 65M60
Keywords: a posteriori error estimates; finite elements; nonlinear parabolic problems; effectivity index; singly implicit Runge-Kutta methods (SIRK)
@article{10_1023_A_1026094127440,
     author = {Vejchodsk\'y, Tom\'a\v{s}},
     title = {Fully discrete error estimation by the method of lines for a nonlinear parabolic problem},
     journal = {Applications of Mathematics},
     pages = {129--151},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2003},
     doi = {10.1023/A:1026094127440},
     mrnumber = {1966345},
     zbl = {1099.65091},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1026094127440/}
}
TY  - JOUR
AU  - Vejchodský, Tomáš
TI  - Fully discrete error estimation by the method of lines for a nonlinear parabolic problem
JO  - Applications of Mathematics
PY  - 2003
SP  - 129
EP  - 151
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1026094127440/
DO  - 10.1023/A:1026094127440
LA  - en
ID  - 10_1023_A_1026094127440
ER  - 
%0 Journal Article
%A Vejchodský, Tomáš
%T Fully discrete error estimation by the method of lines for a nonlinear parabolic problem
%J Applications of Mathematics
%D 2003
%P 129-151
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1026094127440/
%R 10.1023/A:1026094127440
%G en
%F 10_1023_A_1026094127440
Vejchodský, Tomáš. Fully discrete error estimation by the method of lines for a nonlinear parabolic problem. Applications of Mathematics, Tome 48 (2003) no. 2, pp. 129-151. doi : 10.1023/A:1026094127440. http://geodesic.mathdoc.fr/articles/10.1023/A:1026094127440/

Cité par Sources :