Continuation of invariant subspaces via the Recursive Projection Method
Applications of Mathematics, Tome 48 (2003) no. 4, pp. 241-255
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The Recursive Projection Method is a technique for continuation of both the steady states and the dominant invariant subspaces. In this paper a modified version of the RPM called projected RPM is proposed. The modification underlines the stabilization effect. In order to improve the poor update of the unstable invariant subspace we have applied subspace iterations preconditioned by Cayley transform. A statement concerning the local convergence of the resulting method is proved. Results of numerical tests are presented.
The Recursive Projection Method is a technique for continuation of both the steady states and the dominant invariant subspaces. In this paper a modified version of the RPM called projected RPM is proposed. The modification underlines the stabilization effect. In order to improve the poor update of the unstable invariant subspace we have applied subspace iterations preconditioned by Cayley transform. A statement concerning the local convergence of the resulting method is proved. Results of numerical tests are presented.
DOI :
10.1023/A:1026058514236
Classification :
47H17, 47J25, 65H17, 65H20, 65P30
Keywords: steady states; pathfollowing; stability exchange; unstable invariant subspace
Keywords: steady states; pathfollowing; stability exchange; unstable invariant subspace
@article{10_1023_A:1026058514236,
author = {Janovsk\'y, V. and Liberda, O.},
title = {Continuation of invariant subspaces via the {Recursive} {Projection} {Method}},
journal = {Applications of Mathematics},
pages = {241--255},
year = {2003},
volume = {48},
number = {4},
doi = {10.1023/A:1026058514236},
mrnumber = {1994376},
zbl = {1099.65046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1026058514236/}
}
TY - JOUR AU - Janovský, V. AU - Liberda, O. TI - Continuation of invariant subspaces via the Recursive Projection Method JO - Applications of Mathematics PY - 2003 SP - 241 EP - 255 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1026058514236/ DO - 10.1023/A:1026058514236 LA - en ID - 10_1023_A:1026058514236 ER -
%0 Journal Article %A Janovský, V. %A Liberda, O. %T Continuation of invariant subspaces via the Recursive Projection Method %J Applications of Mathematics %D 2003 %P 241-255 %V 48 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1023/A:1026058514236/ %R 10.1023/A:1026058514236 %G en %F 10_1023_A:1026058514236
Janovský, V.; Liberda, O. Continuation of invariant subspaces via the Recursive Projection Method. Applications of Mathematics, Tome 48 (2003) no. 4, pp. 241-255. doi: 10.1023/A:1026058514236
Cité par Sources :