Bounds for $f$-divergences under likelihood ratio constraints
Applications of Mathematics, Tome 48 (2003) no. 3, pp. 205-223.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we establish an upper and a lower bound for the $f$-divergence of two discrete random variables under likelihood ratio constraints in terms of the Kullback-Leibler distance. Some particular cases for Hellinger and triangular discimination, $\chi ^2$-distance and Rényi’s divergences, etc. are also considered.
DOI : 10.1023/A:1026054413327
Classification : 26D15, 94A17
Keywords: $f$-divergence; divergence measures in information theory; Jensen’s inequality; Hellinger and triangular discrimination
@article{10_1023_A_1026054413327,
     author = {Dragomir, S. S.},
     title = {Bounds for $f$-divergences under likelihood ratio constraints},
     journal = {Applications of Mathematics},
     pages = {205--223},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2003},
     doi = {10.1023/A:1026054413327},
     mrnumber = {1980368},
     zbl = {1099.94015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1026054413327/}
}
TY  - JOUR
AU  - Dragomir, S. S.
TI  - Bounds for $f$-divergences under likelihood ratio constraints
JO  - Applications of Mathematics
PY  - 2003
SP  - 205
EP  - 223
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1026054413327/
DO  - 10.1023/A:1026054413327
LA  - en
ID  - 10_1023_A_1026054413327
ER  - 
%0 Journal Article
%A Dragomir, S. S.
%T Bounds for $f$-divergences under likelihood ratio constraints
%J Applications of Mathematics
%D 2003
%P 205-223
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1026054413327/
%R 10.1023/A:1026054413327
%G en
%F 10_1023_A_1026054413327
Dragomir, S. S. Bounds for $f$-divergences under likelihood ratio constraints. Applications of Mathematics, Tome 48 (2003) no. 3, pp. 205-223. doi : 10.1023/A:1026054413327. http://geodesic.mathdoc.fr/articles/10.1023/A:1026054413327/

Cité par Sources :