Bounds for $f$-divergences under likelihood ratio constraints
Applications of Mathematics, Tome 48 (2003) no. 3, pp. 205-223
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we establish an upper and a lower bound for the $f$-divergence of two discrete random variables under likelihood ratio constraints in terms of the Kullback-Leibler distance. Some particular cases for Hellinger and triangular discimination, $\chi ^2$-distance and Rényi’s divergences, etc. are also considered.
DOI :
10.1023/A:1026054413327
Classification :
26D15, 94A17
Keywords: $f$-divergence; divergence measures in information theory; Jensen’s inequality; Hellinger and triangular discrimination
Keywords: $f$-divergence; divergence measures in information theory; Jensen’s inequality; Hellinger and triangular discrimination
@article{10_1023_A_1026054413327,
author = {Dragomir, S. S.},
title = {Bounds for $f$-divergences under likelihood ratio constraints},
journal = {Applications of Mathematics},
pages = {205--223},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {2003},
doi = {10.1023/A:1026054413327},
mrnumber = {1980368},
zbl = {1099.94015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1026054413327/}
}
TY - JOUR AU - Dragomir, S. S. TI - Bounds for $f$-divergences under likelihood ratio constraints JO - Applications of Mathematics PY - 2003 SP - 205 EP - 223 VL - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1026054413327/ DO - 10.1023/A:1026054413327 LA - en ID - 10_1023_A_1026054413327 ER -
Dragomir, S. S. Bounds for $f$-divergences under likelihood ratio constraints. Applications of Mathematics, Tome 48 (2003) no. 3, pp. 205-223. doi: 10.1023/A:1026054413327
Cité par Sources :