Galerkin approximations for the linear parabolic equation with the third boundary condition
Applications of Mathematics, Tome 48 (2003) no. 2, pp. 111-128.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We solve a linear parabolic equation in $\mathbb{R}^d$, $d \ge 1,$ with the third nonhomogeneous boundary condition using the finite element method for discretization in space, and the $\theta $-method for discretization in time. The convergence of both, the semidiscrete approximations and the fully discretized ones, is analysed. The proofs are based on a generalization of the idea of the elliptic projection. The rate of convergence is derived also for variable time step-sizes.
DOI : 10.1023/A:1026042110602
Classification : 65M12, 65M15, 65M60
Keywords: linear parabolic equation; third boundary condition; finite element method; semidiscretization; fully discretized scheme; elliptic projection
@article{10_1023_A_1026042110602,
     author = {Farag\'o, Istv\'an and Korotov, Sergey and Neittaanm\"aki, Pekka},
     title = {Galerkin approximations for the linear parabolic equation with the third boundary condition},
     journal = {Applications of Mathematics},
     pages = {111--128},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2003},
     doi = {10.1023/A:1026042110602},
     mrnumber = {1966344},
     zbl = {1099.65086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1026042110602/}
}
TY  - JOUR
AU  - Faragó, István
AU  - Korotov, Sergey
AU  - Neittaanmäki, Pekka
TI  - Galerkin approximations for the linear parabolic equation with the third boundary condition
JO  - Applications of Mathematics
PY  - 2003
SP  - 111
EP  - 128
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1026042110602/
DO  - 10.1023/A:1026042110602
LA  - en
ID  - 10_1023_A_1026042110602
ER  - 
%0 Journal Article
%A Faragó, István
%A Korotov, Sergey
%A Neittaanmäki, Pekka
%T Galerkin approximations for the linear parabolic equation with the third boundary condition
%J Applications of Mathematics
%D 2003
%P 111-128
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1026042110602/
%R 10.1023/A:1026042110602
%G en
%F 10_1023_A_1026042110602
Faragó, István; Korotov, Sergey; Neittaanmäki, Pekka. Galerkin approximations for the linear parabolic equation with the third boundary condition. Applications of Mathematics, Tome 48 (2003) no. 2, pp. 111-128. doi : 10.1023/A:1026042110602. http://geodesic.mathdoc.fr/articles/10.1023/A:1026042110602/

Cité par Sources :