Epsilon-inflation with contractive interval functions
Applications of Mathematics, Tome 43 (1998) no. 4, pp. 241-254.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For contractive interval functions $ [g] $ we show that $ [g]([x]^{k_0}_\epsilon ) \subseteq \int ([x]^{k_0}_\epsilon ) $ results from the iterative process $ [x]^{k+1} := [g]([x]^k_\epsilon ) $ after finitely many iterations if one uses the epsilon-inflated vector $ [x]^k_\epsilon $ as input for $ [g] $ instead of the original output vector $ [x]^k $. Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way.
DOI : 10.1023/A:1023297204431
Classification : 65F05, 65F10, 65F15, 65G05, 65G10, 65G50, 65H10, 65H15, 65L05
Keywords: epsilon-inflation; P-contraction; contraction; verification algorithms; interval computation; nonlinear equations; eigenvalues; singular values
@article{10_1023_A_1023297204431,
     author = {Mayer, G\"unter},
     title = {Epsilon-inflation with contractive interval functions},
     journal = {Applications of Mathematics},
     pages = {241--254},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1998},
     doi = {10.1023/A:1023297204431},
     mrnumber = {1627997},
     zbl = {0938.65058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023297204431/}
}
TY  - JOUR
AU  - Mayer, Günter
TI  - Epsilon-inflation with contractive interval functions
JO  - Applications of Mathematics
PY  - 1998
SP  - 241
EP  - 254
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1023297204431/
DO  - 10.1023/A:1023297204431
LA  - en
ID  - 10_1023_A_1023297204431
ER  - 
%0 Journal Article
%A Mayer, Günter
%T Epsilon-inflation with contractive interval functions
%J Applications of Mathematics
%D 1998
%P 241-254
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1023297204431/
%R 10.1023/A:1023297204431
%G en
%F 10_1023_A_1023297204431
Mayer, Günter. Epsilon-inflation with contractive interval functions. Applications of Mathematics, Tome 43 (1998) no. 4, pp. 241-254. doi : 10.1023/A:1023297204431. http://geodesic.mathdoc.fr/articles/10.1023/A:1023297204431/

Cité par Sources :