Locally most powerful rank tests for testing randomness and symmetry
Applications of Mathematics, Tome 43 (1998) no. 2, pp. 93-102.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X_i$, $1\le i \le N$, be $N$ independent random variables (i.r.v.) with distribution functions (d.f.) $F_i (x,\Theta )$, $1\le i \le N$, respectively, where $\Theta $ is a real parameter. Assume furthermore that $F_i(\cdot ,0)=F(\cdot )$ for $1\le i \le N$. Let $R=(R_1,\ldots ,R_N)$ and $R^+=(R_1^+,\ldots ,R_N^+)$ be the rank vectors of $X = (X_1,\ldots ,X_N)$ and $|X| = (|X_1|,\ldots ,|X_N|)$, respectively, and let $V = (V_1,\ldots ,V_N)$ be the sign vector of $X$. The locally most powerful rank tests (LMPRT) $S=S(R)$ and the locally most powerful signed rank tests (LMPSRT) $S=S(R^+,V)$ will be found for testing $\Theta = 0$ against $\Theta >0$ or $\Theta 0$ with $F$ being arbitrary and with $F$ symmetric, respectively.
DOI : 10.1023/A:1023258816397
Classification : 62G10
Keywords: locally most powerful rank tests; randomness; symmetry
@article{10_1023_A_1023258816397,
     author = {Ho, Nguyen Van},
     title = {Locally most powerful rank tests for testing randomness and symmetry},
     journal = {Applications of Mathematics},
     pages = {93--102},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1998},
     doi = {10.1023/A:1023258816397},
     mrnumber = {1609174},
     zbl = {0953.62044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023258816397/}
}
TY  - JOUR
AU  - Ho, Nguyen Van
TI  - Locally most powerful rank tests for testing randomness and symmetry
JO  - Applications of Mathematics
PY  - 1998
SP  - 93
EP  - 102
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1023258816397/
DO  - 10.1023/A:1023258816397
LA  - en
ID  - 10_1023_A_1023258816397
ER  - 
%0 Journal Article
%A Ho, Nguyen Van
%T Locally most powerful rank tests for testing randomness and symmetry
%J Applications of Mathematics
%D 1998
%P 93-102
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1023258816397/
%R 10.1023/A:1023258816397
%G en
%F 10_1023_A_1023258816397
Ho, Nguyen Van. Locally most powerful rank tests for testing randomness and symmetry. Applications of Mathematics, Tome 43 (1998) no. 2, pp. 93-102. doi : 10.1023/A:1023258816397. http://geodesic.mathdoc.fr/articles/10.1023/A:1023258816397/

Cité par Sources :