On the motion of rigid bodies in a viscous fluid
Applications of Mathematics, Tome 47 (2002) no. 6, pp. 463-484 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects.
We consider the problem of motion of several rigid bodies in a viscous fluid. Both compressible and incompressible fluids are studied. In both cases, the existence of globally defined weak solutions is established regardless possible collisions of two or more rigid objects.
DOI : 10.1023/A:1023245704966
Classification : 35Q30, 35Q35, 76D03, 76D05
Keywords: rigid body; compressible fluid; incompressible fluid; global existence
@article{10_1023_A:1023245704966,
     author = {Feireisl, Eduard},
     title = {On the motion of rigid bodies in a viscous fluid},
     journal = {Applications of Mathematics},
     pages = {463--484},
     year = {2002},
     volume = {47},
     number = {6},
     doi = {10.1023/A:1023245704966},
     mrnumber = {1948192},
     zbl = {1090.35137},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023245704966/}
}
TY  - JOUR
AU  - Feireisl, Eduard
TI  - On the motion of rigid bodies in a viscous fluid
JO  - Applications of Mathematics
PY  - 2002
SP  - 463
EP  - 484
VL  - 47
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1023245704966/
DO  - 10.1023/A:1023245704966
LA  - en
ID  - 10_1023_A:1023245704966
ER  - 
%0 Journal Article
%A Feireisl, Eduard
%T On the motion of rigid bodies in a viscous fluid
%J Applications of Mathematics
%D 2002
%P 463-484
%V 47
%N 6
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1023245704966/
%R 10.1023/A:1023245704966
%G en
%F 10_1023_A:1023245704966
Feireisl, Eduard. On the motion of rigid bodies in a viscous fluid. Applications of Mathematics, Tome 47 (2002) no. 6, pp. 463-484. doi: 10.1023/A:1023245704966

Cité par Sources :