Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity
Applications of Mathematics, Tome 43 (1998) no. 3, pp. 173-205.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we develop a thermodynamically consistent description of the uniaxial behavior of thermovisco-elastoplastic materials for which the total stress $\sigma $ contains, in addition to elastic, viscous and thermic contributions, a plastic component $\sigma ^p$ of the form $\sigma ^p(x,t)={\mathcal P}[\varepsilon ,\theta (x,t)](x,t)$. Here $\varepsilon $ and $\theta $ are the fields of strain and absolute temperature, respectively, and $\lbrace {\mathcal P}[\cdot ,\theta ]\rbrace _{\theta > 0}$ denotes a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of momentum and energy balance equations governing the space-time evolution of the material forms a system of two highly nonlinearly coupled partial differential equations involving partial derivatives of hysteretic nonlinearities at different places. It is shown that an initial-boundary value problem for this system admits a unique global strong solution which depends continuously on the data.
DOI : 10.1023/A:1023224507448
Classification : 35G25, 73B05, 73B30, 73E60, 74N30
Keywords: thermoplasticity; viscoelasticity; hysteresis; Prandtl-Ishlinskii operator; PDEs with hysteresis; thermodynamical consistency
@article{10_1023_A_1023224507448,
     author = {Krej\v{c}{\'\i}, Pavel and Sprekels, J\"urgen},
     title = {Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity},
     journal = {Applications of Mathematics},
     pages = {173--205},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1998},
     doi = {10.1023/A:1023224507448},
     mrnumber = {1620624},
     zbl = {0940.35052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023224507448/}
}
TY  - JOUR
AU  - Krejčí, Pavel
AU  - Sprekels, Jürgen
TI  - Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity
JO  - Applications of Mathematics
PY  - 1998
SP  - 173
EP  - 205
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1023224507448/
DO  - 10.1023/A:1023224507448
LA  - en
ID  - 10_1023_A_1023224507448
ER  - 
%0 Journal Article
%A Krejčí, Pavel
%A Sprekels, Jürgen
%T Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity
%J Applications of Mathematics
%D 1998
%P 173-205
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1023224507448/
%R 10.1023/A:1023224507448
%G en
%F 10_1023_A_1023224507448
Krejčí, Pavel; Sprekels, Jürgen. Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity. Applications of Mathematics, Tome 43 (1998) no. 3, pp. 173-205. doi : 10.1023/A:1023224507448. http://geodesic.mathdoc.fr/articles/10.1023/A:1023224507448/

Cité par Sources :