Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems
Applications of Mathematics, Tome 43 (1998) no. 4, pp. 263-310.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We present the convergence analysis of an efficient numerical method for the solution of an initial-boundary value problem for a scalar nonlinear conservation law equation with a diffusion term. Nonlinear convective terms are approximated with the aid of a monotone finite volume scheme considered over the finite volume barycentric mesh, whereas the diffusion term is discretized by piecewise linear nonconforming triangular finite elements. Under the assumption that the triangulations are of weakly acute type, with the aid of the discrete maximum principle, a priori estimates and some compactness arguments based on the use of the Fourier transform with respect to time, the convergence of the approximate solutions to the exact solution is proved, provided the mesh size tends to zero.
DOI : 10.1023/A:1023217905340
Classification : 35K60, 65M12, 65M50, 76M10, 76M25
Keywords: nonlinear convection-diffusion problem; barycentric finite volumes; Crouzeix-Raviart nonconforming piecewise linear finite elements; monotone finite volume scheme; discrete maximum principle; a priori estimates; convergence of the method
@article{10_1023_A_1023217905340,
     author = {Angot, Philippe and Dolej\v{s}{\'\i}, V{\'\i}t and Feistauer, Miloslav and Felcman, Ji\v{r}{\'\i}},
     title = {Analysis of a combined barycentric finite volume{\textemdash}nonconforming finite element method for nonlinear convection-diffusion problems},
     journal = {Applications of Mathematics},
     pages = {263--310},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1998},
     doi = {10.1023/A:1023217905340},
     mrnumber = {1627989},
     zbl = {0942.76035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023217905340/}
}
TY  - JOUR
AU  - Angot, Philippe
AU  - Dolejší, Vít
AU  - Feistauer, Miloslav
AU  - Felcman, Jiří
TI  - Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems
JO  - Applications of Mathematics
PY  - 1998
SP  - 263
EP  - 310
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1023217905340/
DO  - 10.1023/A:1023217905340
LA  - en
ID  - 10_1023_A_1023217905340
ER  - 
%0 Journal Article
%A Angot, Philippe
%A Dolejší, Vít
%A Feistauer, Miloslav
%A Felcman, Jiří
%T Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems
%J Applications of Mathematics
%D 1998
%P 263-310
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1023217905340/
%R 10.1023/A:1023217905340
%G en
%F 10_1023_A_1023217905340
Angot, Philippe; Dolejší, Vít; Feistauer, Miloslav; Felcman, Jiří. Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems. Applications of Mathematics, Tome 43 (1998) no. 4, pp. 263-310. doi : 10.1023/A:1023217905340. http://geodesic.mathdoc.fr/articles/10.1023/A:1023217905340/

Cité par Sources :