Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications
Applications of Mathematics, Tome 44 (1999) no. 3, pp. 169-241
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Making use of a surface integral defined without use of the partition of unity, trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-dimensional domains $\Omega$ with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces $H^{1,p}()$ $(1\le p)$. The paper is a generalization of the previous author’s paper which is devoted to the line integral.
Making use of a surface integral defined without use of the partition of unity, trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-dimensional domains $\Omega$ with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces $H^{1,p}()$ $(1\le p)$. The paper is a generalization of the previous author’s paper which is devoted to the line integral.
DOI :
10.1023/A:1023097018446
Classification :
35J20, 46E35, 65N99
Keywords: variational problems; surface integral; trace theorems; Gauss-Ostrogradskij theorem
Keywords: variational problems; surface integral; trace theorems; Gauss-Ostrogradskij theorem
@article{10_1023_A:1023097018446,
author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
title = {Surface integral and {Gauss-Ostrogradskij} theorem from the viewpoint of applications},
journal = {Applications of Mathematics},
pages = {169--241},
year = {1999},
volume = {44},
number = {3},
doi = {10.1023/A:1023097018446},
mrnumber = {1688569},
zbl = {1060.46511},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023097018446/}
}
TY - JOUR AU - Ženíšek, Alexander TI - Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications JO - Applications of Mathematics PY - 1999 SP - 169 EP - 241 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1023097018446/ DO - 10.1023/A:1023097018446 LA - en ID - 10_1023_A:1023097018446 ER -
%0 Journal Article %A Ženíšek, Alexander %T Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications %J Applications of Mathematics %D 1999 %P 169-241 %V 44 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1023/A:1023097018446/ %R 10.1023/A:1023097018446 %G en %F 10_1023_A:1023097018446
Ženíšek, Alexander. Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications. Applications of Mathematics, Tome 44 (1999) no. 3, pp. 169-241. doi: 10.1023/A:1023097018446
Cité par Sources :