Limit cycles in the equation of whirling pendulum with autonomous perturbation
Applications of Mathematics, Tome 44 (1999) no. 4, pp. 271-288.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The two-parameter Hamiltonian system with the autonomous perturbation is considered. Via the Mel’nikov method, existence and uniqueness of a limit cycle of the system in a certain region of a two-dimensional space of parameters is proved.
DOI : 10.1023/A:1023080513150
Classification : 34C05, 34C23, 37G15, 58F21, 70K05
Keywords: whirling pendulum; Hamiltonian system; autonomous perturbation; Melnikov function; limit cycle; homoclinic orbit; elliptic integral
@article{10_1023_A_1023080513150,
     author = {Lichardov\'a, Hana},
     title = {Limit cycles in the equation of whirling pendulum with autonomous perturbation},
     journal = {Applications of Mathematics},
     pages = {271--288},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {1999},
     doi = {10.1023/A:1023080513150},
     mrnumber = {1698769},
     zbl = {1060.34504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023080513150/}
}
TY  - JOUR
AU  - Lichardová, Hana
TI  - Limit cycles in the equation of whirling pendulum with autonomous perturbation
JO  - Applications of Mathematics
PY  - 1999
SP  - 271
EP  - 288
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1023080513150/
DO  - 10.1023/A:1023080513150
LA  - en
ID  - 10_1023_A_1023080513150
ER  - 
%0 Journal Article
%A Lichardová, Hana
%T Limit cycles in the equation of whirling pendulum with autonomous perturbation
%J Applications of Mathematics
%D 1999
%P 271-288
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1023080513150/
%R 10.1023/A:1023080513150
%G en
%F 10_1023_A_1023080513150
Lichardová, Hana. Limit cycles in the equation of whirling pendulum with autonomous perturbation. Applications of Mathematics, Tome 44 (1999) no. 4, pp. 271-288. doi : 10.1023/A:1023080513150. http://geodesic.mathdoc.fr/articles/10.1023/A:1023080513150/

Cité par Sources :