$M$-estimators of structural parameters in pseudolinear models
Applications of Mathematics, Tome 44 (1999) no. 4, pp. 245-270.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Real valued $M$-estimators $\hat{\theta }_n:=\min \sum _1^n\rho (Y_i-\tau (\theta ))$ in a statistical model with observations $Y_i\sim F_{\theta _0}$ are replaced by $\mathbb{R}^p$-valued $M$-estimators $\hat{\beta }_n:=\min \sum _1^n\rho (Y_i-\tau (u(z_i^T\,\beta )))$ in a new model with observations $Y_i\sim F_{u(z_i^t\beta _0)}$, where $z_i\in \mathbb{R}^p$ are regressors, $\beta _0\in \mathbb{R}^p$ is a structural parameter and $u:\mathbb{R}\rightarrow \mathbb{R}$ a structural function of the new model. Sufficient conditions for the consistency of $\hat{\beta }_n$ are derived, motivated by the sufficiency conditions for the simpler “parent estimator” $\hat{\theta }_n$. The result is a general method of consistent estimation in a class of nonlinear (pseudolinear) statistical problems. If $F_\theta $ has a natural exponential density $\mathrm{e}^{\theta x-b(x)}$ then our pseudolinear model with $u=(g\circ \mu )^{-1}$ reduces to the well known generalized linear model, provided $\mu (\theta )= {\mathrm d}b(\theta )/{\mathrm d}\theta $ and $g$ is the so-called link function of the generalized linear model. General results are illustrated for special pairs $\rho $ and $\tau $ leading to some classical $M$-estimators of mathematical statistics, as well as to a new class of generalized $\alpha $-quantile estimators.
DOI : 10.1023/A:1023027929079
Classification : 62F10, 62F12, 62F35
Keywords: $M$-estimator; generalized linear models; pseudolinear models
@article{10_1023_A_1023027929079,
     author = {Liese, Friedrich and Vajda, Igor},
     title = {$M$-estimators of structural parameters in pseudolinear models},
     journal = {Applications of Mathematics},
     pages = {245--270},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {1999},
     doi = {10.1023/A:1023027929079},
     mrnumber = {1698768},
     zbl = {1060.62029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023027929079/}
}
TY  - JOUR
AU  - Liese, Friedrich
AU  - Vajda, Igor
TI  - $M$-estimators of structural parameters in pseudolinear models
JO  - Applications of Mathematics
PY  - 1999
SP  - 245
EP  - 270
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1023027929079/
DO  - 10.1023/A:1023027929079
LA  - en
ID  - 10_1023_A_1023027929079
ER  - 
%0 Journal Article
%A Liese, Friedrich
%A Vajda, Igor
%T $M$-estimators of structural parameters in pseudolinear models
%J Applications of Mathematics
%D 1999
%P 245-270
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1023027929079/
%R 10.1023/A:1023027929079
%G en
%F 10_1023_A_1023027929079
Liese, Friedrich; Vajda, Igor. $M$-estimators of structural parameters in pseudolinear models. Applications of Mathematics, Tome 44 (1999) no. 4, pp. 245-270. doi : 10.1023/A:1023027929079. http://geodesic.mathdoc.fr/articles/10.1023/A:1023027929079/

Cité par Sources :