$M$-estimators of structural parameters in pseudolinear models
Applications of Mathematics, Tome 44 (1999) no. 4, pp. 245-270
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Real valued $M$-estimators $\hat{\theta }_n:=\min \sum _1^n\rho (Y_i-\tau (\theta ))$ in a statistical model with observations $Y_i\sim F_{\theta _0}$ are replaced by $\mathbb{R}^p$-valued $M$-estimators $\hat{\beta }_n:=\min \sum _1^n\rho (Y_i-\tau (u(z_i^T\,\beta )))$ in a new model with observations $Y_i\sim F_{u(z_i^t\beta _0)}$, where $z_i\in \mathbb{R}^p$ are regressors, $\beta _0\in \mathbb{R}^p$ is a structural parameter and $u:\mathbb{R}\rightarrow \mathbb{R}$ a structural function of the new model. Sufficient conditions for the consistency of $\hat{\beta }_n$ are derived, motivated by the sufficiency conditions for the simpler “parent estimator” $\hat{\theta }_n$. The result is a general method of consistent estimation in a class of nonlinear (pseudolinear) statistical problems. If $F_\theta $ has a natural exponential density $\mathrm{e}^{\theta x-b(x)}$ then our pseudolinear model with $u=(g\circ \mu )^{-1}$ reduces to the well known generalized linear model, provided $\mu (\theta )= {\mathrm d}b(\theta )/{\mathrm d}\theta $ and $g$ is the so-called link function of the generalized linear model. General results are illustrated for special pairs $\rho $ and $\tau $ leading to some classical $M$-estimators of mathematical statistics, as well as to a new class of generalized $\alpha $-quantile estimators.
Real valued $M$-estimators $\hat{\theta }_n:=\min \sum _1^n\rho (Y_i-\tau (\theta ))$ in a statistical model with observations $Y_i\sim F_{\theta _0}$ are replaced by $\mathbb{R}^p$-valued $M$-estimators $\hat{\beta }_n:=\min \sum _1^n\rho (Y_i-\tau (u(z_i^T\,\beta )))$ in a new model with observations $Y_i\sim F_{u(z_i^t\beta _0)}$, where $z_i\in \mathbb{R}^p$ are regressors, $\beta _0\in \mathbb{R}^p$ is a structural parameter and $u:\mathbb{R}\rightarrow \mathbb{R}$ a structural function of the new model. Sufficient conditions for the consistency of $\hat{\beta }_n$ are derived, motivated by the sufficiency conditions for the simpler “parent estimator” $\hat{\theta }_n$. The result is a general method of consistent estimation in a class of nonlinear (pseudolinear) statistical problems. If $F_\theta $ has a natural exponential density $\mathrm{e}^{\theta x-b(x)}$ then our pseudolinear model with $u=(g\circ \mu )^{-1}$ reduces to the well known generalized linear model, provided $\mu (\theta )= {\mathrm d}b(\theta )/{\mathrm d}\theta $ and $g$ is the so-called link function of the generalized linear model. General results are illustrated for special pairs $\rho $ and $\tau $ leading to some classical $M$-estimators of mathematical statistics, as well as to a new class of generalized $\alpha $-quantile estimators.
DOI :
10.1023/A:1023027929079
Classification :
62F10, 62F12, 62F35
Keywords: $M$-estimator; generalized linear models; pseudolinear models
Keywords: $M$-estimator; generalized linear models; pseudolinear models
@article{10_1023_A:1023027929079,
author = {Liese, Friedrich and Vajda, Igor},
title = {$M$-estimators of structural parameters in pseudolinear models},
journal = {Applications of Mathematics},
pages = {245--270},
year = {1999},
volume = {44},
number = {4},
doi = {10.1023/A:1023027929079},
mrnumber = {1698768},
zbl = {1060.62029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023027929079/}
}
TY - JOUR AU - Liese, Friedrich AU - Vajda, Igor TI - $M$-estimators of structural parameters in pseudolinear models JO - Applications of Mathematics PY - 1999 SP - 245 EP - 270 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1023027929079/ DO - 10.1023/A:1023027929079 LA - en ID - 10_1023_A:1023027929079 ER -
%0 Journal Article %A Liese, Friedrich %A Vajda, Igor %T $M$-estimators of structural parameters in pseudolinear models %J Applications of Mathematics %D 1999 %P 245-270 %V 44 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1023/A:1023027929079/ %R 10.1023/A:1023027929079 %G en %F 10_1023_A:1023027929079
Liese, Friedrich; Vajda, Igor. $M$-estimators of structural parameters in pseudolinear models. Applications of Mathematics, Tome 44 (1999) no. 4, pp. 245-270. doi: 10.1023/A:1023027929079
Cité par Sources :