Bifurcation of periodic solutions in differential inclusions
Applications of Mathematics, Tome 42 (1997) no. 5, pp. 369-393.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Ordinary differential inclusions depending on small parameters are considered such that the unperturbed inclusions are ordinary differential equations possessing manifolds of periodic solutions. Sufficient conditions are determined for the persistence of some of these periodic solutions after multivalued perturbations. Applications are given to dry friction problems.
DOI : 10.1023/A:1023010108956
Classification : 34A47, 34A60, 34C23, 34C25
Keywords: multivalued mappings; differential inclusions; periodic solutions; dry friction terms
@article{10_1023_A_1023010108956,
     author = {Fe\v{c}kan, Michal},
     title = {Bifurcation of periodic solutions in differential inclusions},
     journal = {Applications of Mathematics},
     pages = {369--393},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {1997},
     doi = {10.1023/A:1023010108956},
     mrnumber = {1467555},
     zbl = {0903.34036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023010108956/}
}
TY  - JOUR
AU  - Fečkan, Michal
TI  - Bifurcation of periodic solutions in differential inclusions
JO  - Applications of Mathematics
PY  - 1997
SP  - 369
EP  - 393
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1023010108956/
DO  - 10.1023/A:1023010108956
LA  - en
ID  - 10_1023_A_1023010108956
ER  - 
%0 Journal Article
%A Fečkan, Michal
%T Bifurcation of periodic solutions in differential inclusions
%J Applications of Mathematics
%D 1997
%P 369-393
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1023010108956/
%R 10.1023/A:1023010108956
%G en
%F 10_1023_A_1023010108956
Fečkan, Michal. Bifurcation of periodic solutions in differential inclusions. Applications of Mathematics, Tome 42 (1997) no. 5, pp. 369-393. doi : 10.1023/A:1023010108956. http://geodesic.mathdoc.fr/articles/10.1023/A:1023010108956/

Cité par Sources :