Recovery of an unknown flux in parabolic problems with nonstandard boundary conditions: Error estimates
Applications of Mathematics, Tome 48 (2003) no. 1, pp. 49-66
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we consider a 2nd order semilinear parabolic initial boundary value problem (IBVP) on a bounded domain $\Omega \subset \mathbb{R}^N$, with nonstandard boundary conditions (BCs). More precisely, at some part of the boundary we impose a Neumann BC containing an unknown additive space-constant $\alpha (t)$, accompanied with a nonlocal (integral) Dirichlet side condition. We design a numerical scheme for the approximation of a weak solution to the IBVP and derive error estimates for the approximation of the solution $u$ and also of the unknown function $\alpha $.
In this paper, we consider a 2nd order semilinear parabolic initial boundary value problem (IBVP) on a bounded domain $\Omega \subset \mathbb{R}^N$, with nonstandard boundary conditions (BCs). More precisely, at some part of the boundary we impose a Neumann BC containing an unknown additive space-constant $\alpha (t)$, accompanied with a nonlocal (integral) Dirichlet side condition. We design a numerical scheme for the approximation of a weak solution to the IBVP and derive error estimates for the approximation of the solution $u$ and also of the unknown function $\alpha $.
DOI :
10.1023/A:1022954920827
Classification :
35B30, 35K20, 35K55, 65M15, 65M32
Keywords: nonlocal boundary condition; parameter identification; parabolic IBVP
Keywords: nonlocal boundary condition; parameter identification; parabolic IBVP
@article{10_1023_A:1022954920827,
author = {Slodi\v{c}ka, Mari\'an},
title = {Recovery of an unknown flux in parabolic problems with nonstandard boundary conditions: {Error} estimates},
journal = {Applications of Mathematics},
pages = {49--66},
year = {2003},
volume = {48},
number = {1},
doi = {10.1023/A:1022954920827},
mrnumber = {1954503},
zbl = {1099.65081},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022954920827/}
}
TY - JOUR AU - Slodička, Marián TI - Recovery of an unknown flux in parabolic problems with nonstandard boundary conditions: Error estimates JO - Applications of Mathematics PY - 2003 SP - 49 EP - 66 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1022954920827/ DO - 10.1023/A:1022954920827 LA - en ID - 10_1023_A:1022954920827 ER -
%0 Journal Article %A Slodička, Marián %T Recovery of an unknown flux in parabolic problems with nonstandard boundary conditions: Error estimates %J Applications of Mathematics %D 2003 %P 49-66 %V 48 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1023/A:1022954920827/ %R 10.1023/A:1022954920827 %G en %F 10_1023_A:1022954920827
Slodička, Marián. Recovery of an unknown flux in parabolic problems with nonstandard boundary conditions: Error estimates. Applications of Mathematics, Tome 48 (2003) no. 1, pp. 49-66. doi: 10.1023/A:1022954920827
Cité par Sources :