An alternative proof of Painlevé's theorem
Applications of Mathematics, Tome 45 (2000) no. 4, pp. 291-299.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article we show some aspects of analytical and numerical solution of the $n$-body problem, which arises from the classical Newtonian model for gravitation attraction. We prove the non-existence of stationary solutions and give an alternative proof for Painlevé’s theorem.
DOI : 10.1023/A:1022371412511
Classification : 70F10, 70F16
Keywords: $n$-body problem; ordinary differential equations; Painlevé’s theorem
@article{10_1023_A_1022371412511,
     author = {N\v{e}mec, Jan},
     title = {An alternative proof of {Painlev\'e's} theorem},
     journal = {Applications of Mathematics},
     pages = {291--299},
     publisher = {mathdoc},
     volume = {45},
     number = {4},
     year = {2000},
     doi = {10.1023/A:1022371412511},
     mrnumber = {1763173},
     zbl = {1058.70015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022371412511/}
}
TY  - JOUR
AU  - Němec, Jan
TI  - An alternative proof of Painlevé's theorem
JO  - Applications of Mathematics
PY  - 2000
SP  - 291
EP  - 299
VL  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022371412511/
DO  - 10.1023/A:1022371412511
LA  - en
ID  - 10_1023_A_1022371412511
ER  - 
%0 Journal Article
%A Němec, Jan
%T An alternative proof of Painlevé's theorem
%J Applications of Mathematics
%D 2000
%P 291-299
%V 45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022371412511/
%R 10.1023/A:1022371412511
%G en
%F 10_1023_A_1022371412511
Němec, Jan. An alternative proof of Painlevé's theorem. Applications of Mathematics, Tome 45 (2000) no. 4, pp. 291-299. doi : 10.1023/A:1022371412511. http://geodesic.mathdoc.fr/articles/10.1023/A:1022371412511/

Cité par Sources :