Some estimates for the oscillation of the deformation gradient
Applications of Mathematics, Tome 45 (2000) no. 6, pp. 401-410.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

As a measure of deformation we can take the difference $D\vec{\phi }-R$, where $D\vec{\phi }$ is the deformation gradient of the mapping $\vec{\phi }$ and $R$ is the deformation gradient of the mapping $\vec{\gamma }$, which represents some proper rigid motion. In this article, the norm $\Vert D\vec{\phi }-R\Vert _{L^p(\Omega )}$ is estimated by means of the scalar measure $e(\vec{\phi })$ of nonlinear strain. First, the estimates are given for a deformation $\vec{\phi }\in W^{1,p}(\Omega )$ satisfying the condition $\vec{\phi }\big |_{\partial \Omega } = \vec{\hspace{0.7pt}\mathop {\mathrm {id}}}$. Then we deduce the estimate in the case that $\vec{\phi }(x)$ is a bi-Lipschitzian deformation and $\vec{\phi }\big |_{\partial \Omega } \ne \vec{\hspace{0.7pt}\mathop {\mathrm {id}}}$.
DOI : 10.1023/A:1022340215798
Classification : 35Q72, 73G05, 74B20
Keywords: hyperelastic material; deformation gradient; strain tensor; matrix and spectral norms; bi-Lipschitzian map
@article{10_1023_A_1022340215798,
     author = {Mo\v{s}ov\'a, Vratislava},
     title = {Some estimates for the oscillation of the deformation gradient},
     journal = {Applications of Mathematics},
     pages = {401--410},
     publisher = {mathdoc},
     volume = {45},
     number = {6},
     year = {2000},
     doi = {10.1023/A:1022340215798},
     mrnumber = {1800961},
     zbl = {1002.74011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022340215798/}
}
TY  - JOUR
AU  - Mošová, Vratislava
TI  - Some estimates for the oscillation of the deformation gradient
JO  - Applications of Mathematics
PY  - 2000
SP  - 401
EP  - 410
VL  - 45
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022340215798/
DO  - 10.1023/A:1022340215798
LA  - en
ID  - 10_1023_A_1022340215798
ER  - 
%0 Journal Article
%A Mošová, Vratislava
%T Some estimates for the oscillation of the deformation gradient
%J Applications of Mathematics
%D 2000
%P 401-410
%V 45
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022340215798/
%R 10.1023/A:1022340215798
%G en
%F 10_1023_A_1022340215798
Mošová, Vratislava. Some estimates for the oscillation of the deformation gradient. Applications of Mathematics, Tome 45 (2000) no. 6, pp. 401-410. doi : 10.1023/A:1022340215798. http://geodesic.mathdoc.fr/articles/10.1023/A:1022340215798/

Cité par Sources :