A continuity property for the inverse of Mañé's projection
Applications of Mathematics, Tome 43 (1998) no. 1, pp. 9-21.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a compact subset of a separable Hilbert space $H$ with finite fractal dimension $d_F(X)$, and $P_0$ an orthogonal projection in $H$ of rank greater than or equal to $2d_F(X)+1$. For every $\delta >0$, there exists an orthogonal projection $P$ in $H$ of the same rank as $P_0$, which is injective when restricted to $X$ and such that $\Vert P-P_0 \Vert \delta $. This result follows from Mañé’s paper. Thus the inverse $(P \vert _X)^{-1}$ of the restricted mapping $P \vert _X\:X\rightarrow PX$ is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s projection $(P \vert _X)^{-1}$. It is known that when $H$ is finite dimensional then $(P \vert _X)^{-1}$ is Hölder continuous. In this paper we shall prove that if $X$ is a global attractor of an infinite dimensional dissipative evolutionary equation then in some cases (e.g. two-dimensional Navier-Stokes equations with homogeneous Dirichlet boundary conditions) $\Vert ~ x-y~\Vert \cdot \ln \ln \frac{1}{\gamma \Vert Px-Py \Vert }\le 1$ for every $x,y \in X$ such that $\Vert Px-Py \Vert \le \frac{1}{\gamma \mathrm{e}^{\mathrm{e}}}$, where $\gamma $ is a positive constant.
DOI : 10.1023/A:1022291923761
Classification : 35Q10, 35Q30, 37L30, 76D05, 76F99
Keywords: dissipative evolutionary equations; Navier-Stokes equations; attractors; Mañé’s projection; fractal dimension
@article{10_1023_A_1022291923761,
     author = {Skal\'ak, Zden\v{e}k},
     title = {A continuity property for the inverse of {Ma\~n\'e's} projection},
     journal = {Applications of Mathematics},
     pages = {9--21},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1998},
     doi = {10.1023/A:1022291923761},
     mrnumber = {1488283},
     zbl = {0940.35151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022291923761/}
}
TY  - JOUR
AU  - Skalák, Zdeněk
TI  - A continuity property for the inverse of Mañé's projection
JO  - Applications of Mathematics
PY  - 1998
SP  - 9
EP  - 21
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022291923761/
DO  - 10.1023/A:1022291923761
LA  - en
ID  - 10_1023_A_1022291923761
ER  - 
%0 Journal Article
%A Skalák, Zdeněk
%T A continuity property for the inverse of Mañé's projection
%J Applications of Mathematics
%D 1998
%P 9-21
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022291923761/
%R 10.1023/A:1022291923761
%G en
%F 10_1023_A_1022291923761
Skalák, Zdeněk. A continuity property for the inverse of Mañé's projection. Applications of Mathematics, Tome 43 (1998) no. 1, pp. 9-21. doi : 10.1023/A:1022291923761. http://geodesic.mathdoc.fr/articles/10.1023/A:1022291923761/

Cité par Sources :