A continuity property for the inverse of Mañé's projection
Applications of Mathematics, Tome 43 (1998) no. 1, pp. 9-21
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $X$ be a compact subset of a separable Hilbert space $H$ with finite fractal dimension $d_F(X)$, and $P_0$ an orthogonal projection in $H$ of rank greater than or equal to $2d_F(X)+1$. For every $\delta >0$, there exists an orthogonal projection $P$ in $H$ of the same rank as $P_0$, which is injective when restricted to $X$ and such that $\Vert P-P_0 \Vert \delta $. This result follows from Mañé’s paper. Thus the inverse $(P \vert _X)^{-1}$ of the restricted mapping $P \vert _X\:X\rightarrow PX$ is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s projection $(P \vert _X)^{-1}$. It is known that when $H$ is finite dimensional then $(P \vert _X)^{-1}$ is Hölder continuous. In this paper we shall prove that if $X$ is a global attractor of an infinite dimensional dissipative evolutionary equation then in some cases (e.g. two-dimensional Navier-Stokes equations with homogeneous Dirichlet boundary conditions) $\Vert ~ x-y~\Vert \cdot \ln \ln \frac{1}{\gamma \Vert Px-Py \Vert }\le 1$ for every $x,y \in X$ such that $\Vert Px-Py \Vert \le \frac{1}{\gamma \mathrm{e}^{\mathrm{e}}}$, where $\gamma $ is a positive constant.
Let $X$ be a compact subset of a separable Hilbert space $H$ with finite fractal dimension $d_F(X)$, and $P_0$ an orthogonal projection in $H$ of rank greater than or equal to $2d_F(X)+1$. For every $\delta >0$, there exists an orthogonal projection $P$ in $H$ of the same rank as $P_0$, which is injective when restricted to $X$ and such that $\Vert P-P_0 \Vert \delta $. This result follows from Mañé’s paper. Thus the inverse $(P \vert _X)^{-1}$ of the restricted mapping $P \vert _X\:X\rightarrow PX$ is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s projection $(P \vert _X)^{-1}$. It is known that when $H$ is finite dimensional then $(P \vert _X)^{-1}$ is Hölder continuous. In this paper we shall prove that if $X$ is a global attractor of an infinite dimensional dissipative evolutionary equation then in some cases (e.g. two-dimensional Navier-Stokes equations with homogeneous Dirichlet boundary conditions) $\Vert ~ x-y~\Vert \cdot \ln \ln \frac{1}{\gamma \Vert Px-Py \Vert }\le 1$ for every $x,y \in X$ such that $\Vert Px-Py \Vert \le \frac{1}{\gamma \mathrm{e}^{\mathrm{e}}}$, where $\gamma $ is a positive constant.
DOI :
10.1023/A:1022291923761
Classification :
35Q10, 35Q30, 37L30, 76D05, 76F99
Keywords: dissipative evolutionary equations; Navier-Stokes equations; attractors; Mañé’s projection; fractal dimension
Keywords: dissipative evolutionary equations; Navier-Stokes equations; attractors; Mañé’s projection; fractal dimension
@article{10_1023_A:1022291923761,
author = {Skal\'ak, Zden\v{e}k},
title = {A continuity property for the inverse of {Ma\~n\'e's} projection},
journal = {Applications of Mathematics},
pages = {9--21},
year = {1998},
volume = {43},
number = {1},
doi = {10.1023/A:1022291923761},
mrnumber = {1488283},
zbl = {0940.35151},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022291923761/}
}
TY - JOUR AU - Skalák, Zdeněk TI - A continuity property for the inverse of Mañé's projection JO - Applications of Mathematics PY - 1998 SP - 9 EP - 21 VL - 43 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1022291923761/ DO - 10.1023/A:1022291923761 LA - en ID - 10_1023_A:1022291923761 ER -
Skalák, Zdeněk. A continuity property for the inverse of Mañé's projection. Applications of Mathematics, Tome 43 (1998) no. 1, pp. 9-21. doi: 10.1023/A:1022291923761
Cité par Sources :