An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process
Applications of Mathematics, Tome 43 (1998) no. 5, pp. 389-398.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathbb{e}_t=(e_{t1},\dots ,e_{tp})^{\prime }$ be a $p$-dimensional nonnegative strict white noise with finite second moments. Let $h_{ij}(x)$ be nondecreasing functions from $[0,\infty )$ onto $[0,\infty )$ such that $h_{ij}(x)\le x$ for $i,j=1,\dots ,p$. Let $\mathbb{U}=(u_{ij})$ be a $p\times p$ matrix with nonnegative elements having all its roots inside the unit circle. Define a process $\mathbb{X}_t=(X_{t1},\dots ,X_{tp})^{\prime }$ by \[ X_{tj}=u_{j1}h_{1j}(X_{t-1,1})+\dots +u_{jp}h_{pj}(X_{t-1,p})+ e_{tj} \] for $j=1,\dots ,p$. A method for estimating $\mathbb{U}$ from a realization $\mathbb{X}_1,\dots ,\mathbb{X}_n$ is proposed. It is proved that the estimators are strongly consistent.
DOI : 10.1023/A:1022290419411
Classification : 62M09, 62M10
Keywords: autoregressive process; estimating parameters; multidimensional process; nonlinear process; nonnegative process
@article{10_1023_A_1022290419411,
     author = {And\v{e}l, Ji\v{r}{\'\i}},
     title = {An estimator for parameters of a nonlinear nonnegative multidimensional {AR(1)} process},
     journal = {Applications of Mathematics},
     pages = {389--398},
     publisher = {mathdoc},
     volume = {43},
     number = {5},
     year = {1998},
     doi = {10.1023/A:1022290419411},
     mrnumber = {1644124},
     zbl = {0953.62091},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022290419411/}
}
TY  - JOUR
AU  - Anděl, Jiří
TI  - An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process
JO  - Applications of Mathematics
PY  - 1998
SP  - 389
EP  - 398
VL  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022290419411/
DO  - 10.1023/A:1022290419411
LA  - en
ID  - 10_1023_A_1022290419411
ER  - 
%0 Journal Article
%A Anděl, Jiří
%T An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process
%J Applications of Mathematics
%D 1998
%P 389-398
%V 43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022290419411/
%R 10.1023/A:1022290419411
%G en
%F 10_1023_A_1022290419411
Anděl, Jiří. An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process. Applications of Mathematics, Tome 43 (1998) no. 5, pp. 389-398. doi : 10.1023/A:1022290419411. http://geodesic.mathdoc.fr/articles/10.1023/A:1022290419411/

Cité par Sources :