An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process
Applications of Mathematics, Tome 43 (1998) no. 5, pp. 389-398
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathbb{e}_t=(e_{t1},\dots ,e_{tp})^{\prime }$ be a $p$-dimensional nonnegative strict white noise with finite second moments. Let $h_{ij}(x)$ be nondecreasing functions from $[0,\infty )$ onto $[0,\infty )$ such that $h_{ij}(x)\le x$ for $i,j=1,\dots ,p$. Let $\mathbb{U}=(u_{ij})$ be a $p\times p$ matrix with nonnegative elements having all its roots inside the unit circle. Define a process $\mathbb{X}_t=(X_{t1},\dots ,X_{tp})^{\prime }$ by \[ X_{tj}=u_{j1}h_{1j}(X_{t-1,1})+\dots +u_{jp}h_{pj}(X_{t-1,p})+ e_{tj} \] for $j=1,\dots ,p$. A method for estimating $\mathbb{U}$ from a realization $\mathbb{X}_1,\dots ,\mathbb{X}_n$ is proposed. It is proved that the estimators are strongly consistent.
DOI :
10.1023/A:1022290419411
Classification :
62M09, 62M10
Keywords: autoregressive process; estimating parameters; multidimensional process; nonlinear process; nonnegative process
Keywords: autoregressive process; estimating parameters; multidimensional process; nonlinear process; nonnegative process
@article{10_1023_A_1022290419411,
author = {And\v{e}l, Ji\v{r}{\'\i}},
title = {An estimator for parameters of a nonlinear nonnegative multidimensional {AR(1)} process},
journal = {Applications of Mathematics},
pages = {389--398},
publisher = {mathdoc},
volume = {43},
number = {5},
year = {1998},
doi = {10.1023/A:1022290419411},
mrnumber = {1644124},
zbl = {0953.62091},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022290419411/}
}
TY - JOUR AU - Anděl, Jiří TI - An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process JO - Applications of Mathematics PY - 1998 SP - 389 EP - 398 VL - 43 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1022290419411/ DO - 10.1023/A:1022290419411 LA - en ID - 10_1023_A_1022290419411 ER -
%0 Journal Article %A Anděl, Jiří %T An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process %J Applications of Mathematics %D 1998 %P 389-398 %V 43 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1023/A:1022290419411/ %R 10.1023/A:1022290419411 %G en %F 10_1023_A_1022290419411
Anděl, Jiří. An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process. Applications of Mathematics, Tome 43 (1998) no. 5, pp. 389-398. doi: 10.1023/A:1022290419411
Cité par Sources :