Numerical solutions for second-kind Volterra integral equations by Galerkin methods
Applications of Mathematics, Tome 45 (2000) no. 1, pp. 19-39.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we study the global convergence for the numerical solutions of nonlinear Volterra integral equations of the second kind by means of Galerkin finite element methods. Global superconvergence properties are discussed by iterated finite element methods and interpolated finite element methods. Local superconvergence and iterative correction schemes are also considered by iterated finite element methods. We improve the corresponding results obtained by collocation methods in the recent papers [6] and [9] by H. Brunner, Q. Lin and N. Yan. Moreover, using an interpolation post-processing technique, we obtain a global superconvergence of the $O(h^{2r})$-convergence rate in the piecewise-polynomial space of degree not exceeding $(r-1)$. As a by-product of our results, all these higher order numerical methods can also provide an a posteriori error estimator, which gives critical and useful information in the code development.
DOI : 10.1023/A:1022284616125
Classification : 45L05, 65B05, 65N30, 65R20
Keywords: Volterra integral equations; Galerkin methods; convergence and superconvergence; interpolation post-processing; iterative correction; a posteriori error estimators
@article{10_1023_A_1022284616125,
     author = {Zhang, Shuhua and Lin, Yanping and Rao, Ming},
     title = {Numerical solutions for second-kind {Volterra} integral equations by {Galerkin} methods},
     journal = {Applications of Mathematics},
     pages = {19--39},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2000},
     doi = {10.1023/A:1022284616125},
     mrnumber = {1738894},
     zbl = {1058.65148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022284616125/}
}
TY  - JOUR
AU  - Zhang, Shuhua
AU  - Lin, Yanping
AU  - Rao, Ming
TI  - Numerical solutions for second-kind Volterra integral equations by Galerkin methods
JO  - Applications of Mathematics
PY  - 2000
SP  - 19
EP  - 39
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022284616125/
DO  - 10.1023/A:1022284616125
LA  - en
ID  - 10_1023_A_1022284616125
ER  - 
%0 Journal Article
%A Zhang, Shuhua
%A Lin, Yanping
%A Rao, Ming
%T Numerical solutions for second-kind Volterra integral equations by Galerkin methods
%J Applications of Mathematics
%D 2000
%P 19-39
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022284616125/
%R 10.1023/A:1022284616125
%G en
%F 10_1023_A_1022284616125
Zhang, Shuhua; Lin, Yanping; Rao, Ming. Numerical solutions for second-kind Volterra integral equations by Galerkin methods. Applications of Mathematics, Tome 45 (2000) no. 1, pp. 19-39. doi : 10.1023/A:1022284616125. http://geodesic.mathdoc.fr/articles/10.1023/A:1022284616125/

Cité par Sources :