Algebraic domain decomposition solver for linear elasticity
Applications of Mathematics, Tome 44 (1999) no. 6, pp. 435-458.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We generalize the overlapping Schwarz domain decomposition method to problems of linear elasticity. The convergence rate independent of the mesh size, coarse-space size, Korn’s constant and essential boundary conditions is proved here. Abstract convergence bounds developed here can be used for an analysis of the method applied to singular perturbations of other elliptic problems.
DOI : 10.1023/A:1022272804816
Classification : 65F10, 65N55, 74B05, 74S05
Keywords: algebraic multigrid; zero energy modes; convergence theory; finite elements; computational mechanics; iterative solvers
@article{10_1023_A_1022272804816,
     author = {Janka, Ale\v{s}},
     title = {Algebraic domain decomposition solver for linear elasticity},
     journal = {Applications of Mathematics},
     pages = {435--458},
     publisher = {mathdoc},
     volume = {44},
     number = {6},
     year = {1999},
     doi = {10.1023/A:1022272804816},
     mrnumber = {1727981},
     zbl = {1060.74628},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022272804816/}
}
TY  - JOUR
AU  - Janka, Aleš
TI  - Algebraic domain decomposition solver for linear elasticity
JO  - Applications of Mathematics
PY  - 1999
SP  - 435
EP  - 458
VL  - 44
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022272804816/
DO  - 10.1023/A:1022272804816
LA  - en
ID  - 10_1023_A_1022272804816
ER  - 
%0 Journal Article
%A Janka, Aleš
%T Algebraic domain decomposition solver for linear elasticity
%J Applications of Mathematics
%D 1999
%P 435-458
%V 44
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022272804816/
%R 10.1023/A:1022272804816
%G en
%F 10_1023_A_1022272804816
Janka, Aleš. Algebraic domain decomposition solver for linear elasticity. Applications of Mathematics, Tome 44 (1999) no. 6, pp. 435-458. doi : 10.1023/A:1022272804816. http://geodesic.mathdoc.fr/articles/10.1023/A:1022272804816/

Cité par Sources :