Green's theorem from the viewpoint of applications
Applications of Mathematics, Tome 44 (1999) no. 1, pp. 55-80
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Making use of a line integral defined without use of the partition of unity, Green’s theorem is proved in the case of two-dimensional domains with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces $W^{1,p}()\equiv H^{1,p}()$ $(1\le p)$.
Making use of a line integral defined without use of the partition of unity, Green’s theorem is proved in the case of two-dimensional domains with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces $W^{1,p}()\equiv H^{1,p}()$ $(1\le p)$.
DOI :
10.1023/A:1022272204023
Classification :
26B20, 35J05, 35J20, 65N99
Keywords: Green’s theorem; elliptic problems; variational problems
Keywords: Green’s theorem; elliptic problems; variational problems
@article{10_1023_A:1022272204023,
author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
title = {Green's theorem from the viewpoint of applications},
journal = {Applications of Mathematics},
pages = {55--80},
year = {1999},
volume = {44},
number = {1},
doi = {10.1023/A:1022272204023},
mrnumber = {1666842},
zbl = {1060.35504},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022272204023/}
}
TY - JOUR AU - Ženíšek, Alexander TI - Green's theorem from the viewpoint of applications JO - Applications of Mathematics PY - 1999 SP - 55 EP - 80 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1022272204023/ DO - 10.1023/A:1022272204023 LA - en ID - 10_1023_A:1022272204023 ER -
Ženíšek, Alexander. Green's theorem from the viewpoint of applications. Applications of Mathematics, Tome 44 (1999) no. 1, pp. 55-80. doi: 10.1023/A:1022272204023
Cité par Sources :