A posteriori error estimation and adaptivity in the method of lines with mixed finite elements
Applications of Mathematics, Tome 44 (1999) no. 6, pp. 407-419
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.
We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.
DOI :
10.1023/A:1022268703907
Classification :
65M15, 65M20, 65M60
Keywords: superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement
Keywords: superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement
@article{10_1023_A:1022268703907,
author = {Brandts, Jan H.},
title = {A posteriori error estimation and adaptivity in the method of lines with mixed finite elements},
journal = {Applications of Mathematics},
pages = {407--419},
year = {1999},
volume = {44},
number = {6},
doi = {10.1023/A:1022268703907},
mrnumber = {1727979},
zbl = {1060.65642},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022268703907/}
}
TY - JOUR AU - Brandts, Jan H. TI - A posteriori error estimation and adaptivity in the method of lines with mixed finite elements JO - Applications of Mathematics PY - 1999 SP - 407 EP - 419 VL - 44 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1022268703907/ DO - 10.1023/A:1022268703907 LA - en ID - 10_1023_A:1022268703907 ER -
%0 Journal Article %A Brandts, Jan H. %T A posteriori error estimation and adaptivity in the method of lines with mixed finite elements %J Applications of Mathematics %D 1999 %P 407-419 %V 44 %N 6 %U http://geodesic.mathdoc.fr/articles/10.1023/A:1022268703907/ %R 10.1023/A:1022268703907 %G en %F 10_1023_A:1022268703907
Brandts, Jan H. A posteriori error estimation and adaptivity in the method of lines with mixed finite elements. Applications of Mathematics, Tome 44 (1999) no. 6, pp. 407-419. doi: 10.1023/A:1022268703907
Cité par Sources :