Steady vortex rings with swirl in an ideal fluid: asymptotics for some solutions in exterior domains
Applications of Mathematics, Tome 44 (1999) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, the axisymmetric flow in an ideal fluid outside the infinite cylinder ($r \le d$) where $ (r,\theta ,z)$ denotes the cylindrical co-ordinates in ${\mathbb{R}}^3$ is considered. The motion is with swirl (i.e. the $\theta $-component of the velocity of the flow is non constant). The (non-dimensional) equation governing the phenomenon is (Pd) displayed below. It is known from e.g. that for the problem without swirl ($f_q=0$ in (f)) in the whole space, as the flux constant $k$ tends to $\infty $, 1) $\mathrm{dist}(0z,\partial A)=O(k^{1/2})$; $\mathrm{diam}A = O(\exp (-c_0k^{3/2}))$; 2) $(k^{1/2} \Psi )_{k \in \mathbb{N}}$ converges to a vortex cylinder $U_m$ (see (1.2)). We show that for the problem with swirl, as $k\nearrow \infty $, 1) holds; if $m \le q+2$ then 2) holds and if $m> q+2$ it holds with $U_{q+2}$ instead of $U_m$. Moreover, these results are independent of $f_0$, $f_q$ and $d>0$.
DOI : 10.1023/A:1022264002206
Classification : 31B15, 35Q35, 76B47, 76M25
Keywords: vortex rings; potential theory; elliptic equations
@article{10_1023_A_1022264002206,
     author = {Tadie},
     title = {Steady vortex rings with swirl in an ideal fluid: asymptotics for some solutions in exterior domains},
     journal = {Applications of Mathematics},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1999},
     doi = {10.1023/A:1022264002206},
     mrnumber = {1666858},
     zbl = {1059.76507},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022264002206/}
}
TY  - JOUR
AU  - Tadie
TI  - Steady vortex rings with swirl in an ideal fluid: asymptotics for some solutions in exterior domains
JO  - Applications of Mathematics
PY  - 1999
SP  - 1
EP  - 13
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022264002206/
DO  - 10.1023/A:1022264002206
LA  - en
ID  - 10_1023_A_1022264002206
ER  - 
%0 Journal Article
%A Tadie
%T Steady vortex rings with swirl in an ideal fluid: asymptotics for some solutions in exterior domains
%J Applications of Mathematics
%D 1999
%P 1-13
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022264002206/
%R 10.1023/A:1022264002206
%G en
%F 10_1023_A_1022264002206
Tadie. Steady vortex rings with swirl in an ideal fluid: asymptotics for some solutions in exterior domains. Applications of Mathematics, Tome 44 (1999) no. 1, pp. 1-13. doi : 10.1023/A:1022264002206. http://geodesic.mathdoc.fr/articles/10.1023/A:1022264002206/

Cité par Sources :