Linearization conditions for regression models with unknown variance parameter
Applications of Mathematics, Tome 45 (2000) no. 2, pp. 145-160.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the case of the nonlinear regression model, methods and procedures have been developed to obtain estimates of the parameters. These methods are much more complicated than the procedures used if the model considered is linear. Moreover, unlike the linear case, the properties of the resulting estimators are unknown and usually depend on the true values of the estimated parameters. It is sometimes possible to approximate the nonlinear model by a linear one and use the much more developed linear methods, but some procedure is needed to recognize such situations. One attempt to find such a procedure, taking into account the requirements of the user, is given in , , , where the existence of an a priori information on the parameters is assumed. Here some linearization criteria are proposed and the linearization domains, i.e. domains in the parameter space where these criteria are fulfilled, are defined. The aim of the present paper is to use a similar approach to find simple conditions for linearization of the model in the case of a locally quadratic model with unknown variance parameter $\sigma ^2$. Also a test of intrinsic nonlinearity of the model and an unbiased estimator of this parameter are derived.
DOI : 10.1023/A:1022239613534
Classification : 62F10, 62J02, 62J05
Keywords: nonlinear regression models; linearization domains; linearization conditions
@article{10_1023_A_1022239613534,
     author = {Jen\v{c}ov\'a, Anna},
     title = {Linearization conditions for regression models with unknown variance parameter},
     journal = {Applications of Mathematics},
     pages = {145--160},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2000},
     doi = {10.1023/A:1022239613534},
     mrnumber = {1745611},
     zbl = {1067.62547},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022239613534/}
}
TY  - JOUR
AU  - Jenčová, Anna
TI  - Linearization conditions for regression models with unknown variance parameter
JO  - Applications of Mathematics
PY  - 2000
SP  - 145
EP  - 160
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022239613534/
DO  - 10.1023/A:1022239613534
LA  - en
ID  - 10_1023_A_1022239613534
ER  - 
%0 Journal Article
%A Jenčová, Anna
%T Linearization conditions for regression models with unknown variance parameter
%J Applications of Mathematics
%D 2000
%P 145-160
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022239613534/
%R 10.1023/A:1022239613534
%G en
%F 10_1023_A_1022239613534
Jenčová, Anna. Linearization conditions for regression models with unknown variance parameter. Applications of Mathematics, Tome 45 (2000) no. 2, pp. 145-160. doi : 10.1023/A:1022239613534. http://geodesic.mathdoc.fr/articles/10.1023/A:1022239613534/

Cité par Sources :