A heat approximation
Applications of Mathematics, Tome 45 (2000) no. 1, pp. 41-68.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The Fourier problem on planar domains with time variable boundary is considered using integral equations. A simple numerical method for the integral equation is described and the convergence of the method is proved. It is shown how to approximate the solution of the Fourier problem and how to estimate the error. A numerical example is given.
DOI : 10.1023/A:1022236700195
Classification : 31A25, 35K05, 45L05, 45P05, 65N99, 65R20
Keywords: heat equation; boundary value problem; integral equations; numerical solution; boundary element method
@article{10_1023_A_1022236700195,
     author = {Dont, Miroslav},
     title = {A heat approximation},
     journal = {Applications of Mathematics},
     pages = {41--68},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2000},
     doi = {10.1023/A:1022236700195},
     mrnumber = {1738895},
     zbl = {1058.31001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022236700195/}
}
TY  - JOUR
AU  - Dont, Miroslav
TI  - A heat approximation
JO  - Applications of Mathematics
PY  - 2000
SP  - 41
EP  - 68
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022236700195/
DO  - 10.1023/A:1022236700195
LA  - en
ID  - 10_1023_A_1022236700195
ER  - 
%0 Journal Article
%A Dont, Miroslav
%T A heat approximation
%J Applications of Mathematics
%D 2000
%P 41-68
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022236700195/
%R 10.1023/A:1022236700195
%G en
%F 10_1023_A_1022236700195
Dont, Miroslav. A heat approximation. Applications of Mathematics, Tome 45 (2000) no. 1, pp. 41-68. doi : 10.1023/A:1022236700195. http://geodesic.mathdoc.fr/articles/10.1023/A:1022236700195/

Cité par Sources :