Domain decomposition methods for solving the Burgers equation
Applications of Mathematics, Tome 44 (1999) no. 6, pp. 421-434.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This article presents some results of numerical tests of solving the two-dimensional non-linear unsteady viscous Burgers equation. We have compared the known convergence and parallel performance properties of the additive Schwarz domain decomposition method with or without a coarse grid for the model Poisson problem with those obtained by experiments for the Burgers problem.
DOI : 10.1023/A:1022220820745
Classification : 65M55, 76D99, 76M25
Keywords: domain decomposition; multilevel methods; fluid mechanics; Burgers equation
@article{10_1023_A_1022220820745,
     author = {Cimrman, Robert},
     title = {Domain decomposition methods for solving the {Burgers} equation},
     journal = {Applications of Mathematics},
     pages = {421--434},
     publisher = {mathdoc},
     volume = {44},
     number = {6},
     year = {1999},
     doi = {10.1023/A:1022220820745},
     mrnumber = {1727980},
     zbl = {1060.65647},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022220820745/}
}
TY  - JOUR
AU  - Cimrman, Robert
TI  - Domain decomposition methods for solving the Burgers equation
JO  - Applications of Mathematics
PY  - 1999
SP  - 421
EP  - 434
VL  - 44
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1023/A:1022220820745/
DO  - 10.1023/A:1022220820745
LA  - en
ID  - 10_1023_A_1022220820745
ER  - 
%0 Journal Article
%A Cimrman, Robert
%T Domain decomposition methods for solving the Burgers equation
%J Applications of Mathematics
%D 1999
%P 421-434
%V 44
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1023/A:1022220820745/
%R 10.1023/A:1022220820745
%G en
%F 10_1023_A_1022220820745
Cimrman, Robert. Domain decomposition methods for solving the Burgers equation. Applications of Mathematics, Tome 44 (1999) no. 6, pp. 421-434. doi : 10.1023/A:1022220820745. http://geodesic.mathdoc.fr/articles/10.1023/A:1022220820745/

Cité par Sources :